Teske Andreas, Callaghan Amy V, LaRowe Douglas E
Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA.
Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA.
Front Microbiol. 2014 Jul 31;5:362. doi: 10.3389/fmicb.2014.00362. eCollection 2014.
Temperature is one of the key constraints on the spatial extent, physiological and phylogenetic diversity, and biogeochemical function of subsurface life. A model system to explore these interrelationships should offer a suitable range of geochemical regimes, carbon substrates and temperature gradients under which microbial life can generate energy and sustain itself. In this theory and hypothesis article, we make the case for the hydrothermally heated sediments of Guaymas Basin in the Gulf of California as a suitable model system where extensive temperature and geochemical gradients create distinct niches for active microbial populations in the hydrothermally influenced sedimentary subsurface that in turn intercept and process hydrothermally generated carbon sources. We synthesize the evidence for high-temperature microbial methane cycling and sulfate reduction at Guaymas Basin - with an eye on sulfate-dependent oxidation of abundant alkanes - and demonstrate the energetic feasibility of these latter types of deep subsurface life in previously drilled Guaymas Basin locations of Deep-Sea Drilling Project 64.
温度是限制地下生命的空间范围、生理和系统发育多样性以及生物地球化学功能的关键因素之一。一个用于探索这些相互关系的模型系统应提供一系列合适的地球化学条件、碳底物和温度梯度,在此条件下微生物生命能够产生能量并维持自身生存。在这篇理论与假说文章中,我们认为加利福尼亚湾瓜伊马斯盆地的热液加热沉积物是一个合适的模型系统,在那里广泛的温度和地球化学梯度为热液影响的沉积地下层中的活跃微生物种群创造了独特的生态位,这些微生物种群进而拦截并处理热液产生的碳源。我们综合了瓜伊马斯盆地高温微生物甲烷循环和硫酸盐还原的证据——着眼于丰富烷烃的硫酸盐依赖氧化——并证明了在深海钻探计划64号先前钻探的瓜伊马斯盆地地点,这些后一种类型的深部地下生命在能量方面的可行性。