Suppr超能文献

高性能离子二极管膜用于盐差能发电。

High-performance ionic diode membrane for salinity gradient power generation.

机构信息

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.

出版信息

J Am Chem Soc. 2014 Sep 3;136(35):12265-72. doi: 10.1021/ja503692z. Epub 2014 Aug 22.

Abstract

Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

摘要

海水和河水之间的盐度差异是一种可持续的能源资源,在能源危机的背景下引起了公众和投资者的关注。为了捕捉这种能源,化学、材料科学、环境科学和纳米技术等跨学科领域的努力已经创造出高效且经济可行的能量转换方法和材料。除了传统的基于膜的工艺外,从纳米尺度的新型流体输运现象中有望获得从天然水中获取盐度梯度能的技术突破。实现实际应用的主要挑战是将现有的单通道器件外推到宏观材料。在这里,我们报告了一种具有不对称结构、化学成分和表面电荷极性的膜尺度纳米流体器件,称为离子二极管膜(IDM),用于从盐度梯度中获取电能。IDM 由介孔碳(孔径约 7nm,带负电)和大孔氧化铝(孔径约 80nm,带正电)之间的异质结组成。介孔/大孔膜对离子电流具有明显高的整流比(约 450),并且在高浓度电解质中甚至在饱和溶液中仍保持整流。选择性和整流离子输运进一步揭示了盐度梯度发电的原理。通过将人工海水和河水混合通过 IDM,可以发现高达 3.46W/m²的高功率密度,大大超过了一些商业离子交换膜。基于耦合泊松和能斯特-普朗克方程的理论模型被建立以定量解释实验观察结果,并深入了解其潜在机制。宏观和不对称的纳米流体结构为可持续发电、水净化和海水淡化提供了广阔的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验