Suppr超能文献

用于自供电离子器件的光响应性高度对齐纳米通道的可扩展集成。

Scalable integration of photoresponsive highly aligned nanochannels for self-powered ionic devices.

作者信息

Huang Yaxin, Wu Changjin, Cao Yingnan, Zheng Jing, Zeng Binglin, Li Xiaofeng, Li Mingliang, Tang Jinyao

机构信息

Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China.

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

出版信息

Sci Adv. 2024 Dec 20;10(51):eads5591. doi: 10.1126/sciadv.ads5591.

Abstract

Artificial ionic nanochannels with light perception capabilities hold promise for creating ionic devices. Nevertheless, most research primarily focuses on regulating single nanochannels, leaving the cumulative effect of numerous nanochannels and their integration underexplored. We herein develop a biomimetic photoreceptor based on photoresponsive highly aligned nanochannels (pHANCs), which exhibit uniform channel heights, phototunable surface properties, and excellent compatibility with microfabrication techniques, enabling the scalable fabrication and integration into functional ionic devices. These pHANCs demonstrate exceptional ion selectivity and permeability due to the high surface charges and well-ordered conduits, resulting in outstanding energy harvesting from concentration gradients. Large-scale fabrication of pHANCs has been successfully realized, wherein hundreds of biomimetic photoreceptors produce an ultrahigh voltage over 76 volts, which has not been achieved previously. In addition, we demonstrate that the biomimetic photoreceptor can be further upscaled to be a self-powered ionic image sensor, capable of sensing and decoding incident light information.

摘要

具有光感知能力的人工离子纳米通道有望用于制造离子器件。然而,大多数研究主要集中在调节单个纳米通道,而众多纳米通道的累积效应及其集成尚未得到充分探索。我们在此开发了一种基于光响应高度排列纳米通道(pHANCs)的仿生光感受器,其具有均匀的通道高度、光可调表面特性以及与微加工技术的出色兼容性,能够实现可扩展制造并集成到功能性离子器件中。这些pHANCs由于高表面电荷和有序的通道而表现出卓越的离子选择性和渗透性,从而能够从浓度梯度中出色地收集能量。已经成功实现了pHANCs的大规模制造,其中数百个仿生光感受器产生超过76伏的超高电压,这是以前未曾实现过的。此外,我们证明该仿生光感受器可以进一步扩大规模成为自供电离子图像传感器,能够感知和解码入射光信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f6/11661449/ec3d1cb2a8f2/sciadv.ads5591-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验