Suppr超能文献

通过类离子通道的固态纳米孔进行不对称离子传输。

Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

机构信息

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China.

出版信息

Acc Chem Res. 2013 Dec 17;46(12):2834-46. doi: 10.1021/ar400024p. Epub 2013 May 28.

Abstract

Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct different environmental conditions in the electrolyte solutions on either side of the nanochannel. The novel and well-controlled nanofluidic phenomena have become the foundation for many promising applications, and we have highlighted several representative examples. Inspired by the electrogenic cell of the electric eel, we have demonstrated a proof-of-concept nanofluidic reverse electrodialysis system (NREDS) that converts salinity gradient energy into electricity by means of net diffusion current. We have also constructed chirality analysis systems into nanofluidic architectures and monitored these sensing events as the change in the degree of ionic current rectification. Moreover, we have developed a biohybrid nanosystem, in which we reconstituted the F0F1-ATPase on a liposome-coated, solid-state nanoporous membrane. By applying a transmembrane proton concentration gradient, the biohybrid nanodevice can synthesize ATP in vitro. These findings have improved our understanding of the asymmetric ion transport phenomena in synthetic nanofluidic systems and offer innovative insights into the design of functional nanofluidic devices.

摘要

科学家和工程师都对设计和制造模拟生物离子通道门控功能的合成纳流控结构感兴趣。构建此类结构需要在化学、材料科学和纳米技术的交叉领域进行跨学科努力。生物离子通道和合成纳流控器件在结构和化学上具有一些相似性,因此它们在调节跨膜离子流方面具有一些共同特征。在过去的十年中,研究人员已经在合成纳流控结构中发现了两种不对称离子输运现象,即整流离子电流和净扩散电流。整流离子电流是在切换电压偏置时发生的类似二极管的电流-电压响应。这种现象表明纳流控系统中存在优先的输运方向。净扩散电流是电荷选择性的直接产物,是通过带电荷的纳流控通道不对称扩散产生的。这些新的离子输运现象和生物学中出现的精细结构激发了我们构建用于基础研究和实际应用的功能性纳流控器件。在本综述中,我们回顾了我们在设计和制造具有不对称离子输运行为的仿生固态纳流控器件方面的最新进展。我们展示了整流离子电流和净扩散电流的起源。我们还确定了几个有影响的因素,并讨论了如何通过控制 (1) 纳米孔几何形状、(2) 表面电荷分布、(3) 化学组成、(4) 通道壁润湿性、(5) 环境 pH 值、(6) 电解质浓度梯度和 (7) 离子迁移率来将这些不对称特征构建到纳流控系统中。在前四个特征中,我们将这些不对称特征直接构建到纳流控结构中。在后三个特征中,我们在纳米通道两侧的电解质溶液中构建了不同的环境条件。新颖且可控的纳流控现象已成为许多有前途的应用的基础,我们强调了几个有代表性的例子。受电鳗发电细胞的启发,我们展示了一个概念验证纳流控反向电渗析系统 (NREDS),该系统通过净扩散电流将盐度梯度能转化为电能。我们还将手性分析系统构建到纳流控结构中,并监测这些传感事件作为离子电流整流程度的变化。此外,我们开发了一种生物混合纳米系统,其中我们在脂质体涂覆的固态纳米多孔膜上重新组装了 F0F1-ATP 酶。通过施加跨膜质子浓度梯度,生物混合纳米设备可以在体外合成 ATP。这些发现提高了我们对合成纳流控系统中不对称离子输运现象的理解,并为功能性纳流控器件的设计提供了创新性的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验