Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts.
Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts
Am J Physiol Cell Physiol. 2014 Nov 1;307(9):C878-92. doi: 10.1152/ajpcell.00185.2014. Epub 2014 Aug 20.
Microvascular stability and regulation of capillary tonus are regulated by pericytes and their interactions with endothelial cells (EC). While the RhoA/Rho kinase (ROCK) pathway has been implicated in modulation of pericyte contractility, in part via regulation of the myosin light chain phosphatase (MLCP), the mechanisms linking Rho GTPase activity with actomyosin-based contraction and the cytoskeleton are equivocal. Recently, the myosin phosphatase-RhoA-interacting protein (MRIP) was shown to mediate the RhoA/ROCK-directed MLCP inactivation in vascular smooth muscle. Here we report that MRIP directly interacts with the β-actin-specific capping protein βcap73. Furthermore, manipulation of MRIP expression influences pericyte contractility, with MRIP silencing inducing cytoskeletal remodeling and cellular hypertrophy. MRIP knockdown induces a repositioning of βcap73 from the leading edge to stress fibers; thus MRIP-silenced pericytes increase F-actin-driven cell spreading twofold. These hypertrophied and cytoskeleton-enriched pericytes demonstrate a 2.2-fold increase in contractility upon MRIP knockdown when cells are plated on a deformable substrate. In turn, silencing pericyte MRIP significantly affects EC cycle progression and angiogenic activation. When MRIP-silenced pericytes are cocultured with capillary EC, there is a 2.0-fold increase in EC cycle entry. Furthermore, in three-dimensional models of injury and repair, silencing pericyte MRIP results in a 1.6-fold elevation of total tube area due to EC network formation and increased angiogenic sprouting. The pivotal role of MRIP expression in governing pericyte contractile phenotype and endothelial growth should lend important new insights into how chemomechanical signaling pathways control the "angiogenic switch" and pathological angiogenic induction.
微血管稳定性和毛细血管张力的调节受周细胞及其与内皮细胞 (EC) 的相互作用调节。虽然 RhoA/ Rho 激酶 (ROCK) 途径已被认为参与调节周细胞收缩,部分通过调节肌球蛋白轻链磷酸酶 (MLCP),但将 Rho GTPase 活性与肌动球蛋白为基础的收缩和细胞骨架联系起来的机制仍存在争议。最近,肌球蛋白磷酸酶 -RhoA 相互作用蛋白 (MRIP) 被证明介导血管平滑肌中 RhoA/ROCK 定向的 MLCP 失活。在这里,我们报告 MRIP 与肌球蛋白轻链特异性加帽蛋白 βcap73 直接相互作用。此外,MRIP 表达的操纵会影响周细胞的收缩性,MRIP 沉默会诱导细胞骨架重塑和细胞肥大。MRIP 敲低会导致 βcap73 从前沿重新定位到应力纤维;因此,MRIP 沉默的周细胞使 F-肌动蛋白驱动的细胞铺展增加两倍。这些肥大和富含细胞骨架的周细胞在细胞铺在可变形底物上时,MRIP 敲低后收缩性增加了 2.2 倍。反过来,沉默周细胞的 MRIP 会显著影响 EC 周期进程和血管生成激活。当与毛细血管 EC 共培养时,MRIP 沉默的周细胞中 EC 周期进入增加了 2.0 倍。此外,在损伤和修复的三维模型中,沉默周细胞的 MRIP 导致由于 EC 网络形成和血管生成发芽增加,总管面积增加了 1.6 倍。MRIP 表达在调节周细胞收缩表型和内皮生长中的关键作用应该为化学机械信号通路如何控制“血管生成开关”和病理性血管生成诱导提供重要的新见解。