Department of Ophthalmology, University of Virginia, Charlottesville, Virginia, United States of America.
PLoS One. 2013 May 31;8(5):e65691. doi: 10.1371/journal.pone.0065691. Print 2013.
Retinal vasculopathies, including diabetic retinopathy (DR), threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs) differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy.
METHODOLOGY/PRINCIPAL FINDINGS: We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR), ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area). ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction). Treatment of ASCs with transforming growth factor beta (TGF-β1) enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection).
CONCLUSIONS/SIGNIFICANCE: ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated by ASCs is enhanced with TGF-β1 treatment, as seen with native retinal pericytes. ASCs may represent an innovative cellular therapy for protection against and repair of DR and other retinal vascular diseases.
视网膜血管病变,包括糖尿病视网膜病变(DR),威胁着超过 1 亿人的视力。视网膜周细胞对于微血管的控制至关重要,通过直接接触和旁分泌机制支持视网膜内皮细胞。随着周细胞的死亡或丧失,内皮功能障碍随之发生,导致缺氧损伤、病理性血管生成,最终导致失明。脂肪来源的干细胞(ASCs)分化为周细胞,这表明它们可能作为一种用于治疗视网膜血管疾病的保护性和再生细胞疗法很有用。在这项研究中,我们研究了 ASCs 分化为周细胞的能力,这些周细胞可以稳定多种视网膜血管病变的临床前模型中的视网膜血管。
方法/主要发现:我们发现 ASCs 在体外表达周细胞特异性标志物。当将 ASCs 眼内注射到氧诱导的视网膜病变(OIR)的小鼠眼中时,ASCs 能够迁移并整合到视网膜血管中。在体内,整合的 ASCs 至少 2 个月保持标志物表达和周细胞样形态。在 OIR 血管不稳定和消融后注射 ASCs 可增强血管再生(血管无血管面积减少 16%)。在 OIR 血管不稳定之前眼内注射 ASCs 可防止视网膜毛细血管脱落(减少 53%)。用转化生长因子β(TGF-β1)处理 ASCs 可增强 hASC 周细胞的功能,类似于天然视网膜周细胞,增加平滑肌肌动蛋白、细胞收缩性、内皮稳定性和 OIR 中小血管保护的标志物表达。最后,注射的 ASCs 可防止糖尿病性视网膜病变的 Akimba 小鼠的毛细血管丢失(注射后 2 个月减少 79%)。
结论/意义:ASC 衍生的周细胞可以与视网膜血管整合,采用周细胞形态和标志物表达,并在多种视网膜血管病变的小鼠模型中提供功能性血管保护。用 TGF-β1 处理后,ASCs 表现出的周细胞表型增强,与天然视网膜周细胞一样。ASCs 可能代表一种创新的细胞疗法,用于预防和修复 DR 和其他视网膜血管疾病。