Suppr超能文献

面向数据统计与分析的局部差分隐私技术综述

A Comprehensive Survey on Local Differential Privacy toward Data Statistics and Analysis.

机构信息

School of Cyberspace Security, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.

School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Sensors (Basel). 2020 Dec 8;20(24):7030. doi: 10.3390/s20247030.

Abstract

Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will seriously threaten the privacy of participating users. Local differential privacy (LDP) was proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each user's data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Furthermore, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP.

摘要

在众包中,从智能设备中收集和分析大规模数据已经变得越来越普遍,这些数据是数据驱动决策的基础。然而,对这些数据进行广泛的统计和分析将严重威胁参与用户的隐私。局部差分隐私(LDP)作为一种具有分布式架构的优秀且流行的隐私模型被提出,它可以在收集和分析数据的同时为每个用户提供强大的隐私保护。LDP 确保每个用户的数据在客户端本地进行先扰动,然后再发送到服务器端,从而保护客户端和服务器端的数据免受隐私泄露的影响。本调查全面系统地概述了 LDP 隐私模型、研究任务、实现机制以及各种应用。具体来说,我们首先对 LDP 进行了理论总结,包括 LDP 模型、LDP 的变体以及 LDP 算法的基本框架。然后,我们从频率估计、均值估计和机器学习的角度研究和比较了各种用于不同数据统计和分析任务的 LDP 机制。此外,我们还总结了基于 LDP 的实际应用场景。最后,我们概述了 LDP 下的几个未来研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/574e/7763193/9b2ac5740e6d/sensors-20-07030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验