Morrison Shawnda A, Cheung Stephen, Cotter James D
University of Otago, Dunedin, New Zealand.
J Athl Train. 2014 Sep-Oct;49(5):632-9. doi: 10.4085/1062-6050-49.3.27. Epub 2014 Aug 21.
Cooling the body before exercise (precooling) has been studied as an ergogenic aid for many thermal conditions; however, airflow accompanying exercise is seldom reported.
To determine whether the physiologic and ergogenic benefits of precooling before endurance exercise may be negated with semirealistic airflow in hot conditions.
Crossover study.
Climate-controlled chamber in a research laboratory.
Ten fit, healthy cyclists.
INTERVENTION(S): After a familiarization trial, participants completed 4 randomized, counterbalanced sessions consisting of no precooling versus precooling and no fan airflow versus airflow (4.8 m/s) during exercise. Precooling was via chest-deep immersion (24 °C) for 1 hour or until core temperature dropped 0.5 °C. Participants then cycled at 95% ventilatory threshold in a hot environment (temperature = 30 °C, relative humidity = 50%) until volitional exhaustion, core temperature reached >39.5 °C, or heart rate reached >95% of maximum.
MAIN OUTCOME MEASURE(S): Thermal strain was assessed via core temperature (esophageal and rectal thermistors) and mean skin temperature (thermistors at 10 sites) and cardiovascular strain via heart rate and ratings of perceived exertion.
Endurance time (28 ± 12 minutes without precooling or airflow) increased by 30 ± 23 minutes with airflow (109%; 95% confidence interval = 12, 45 minutes; P < .001) and by 16 ± 15 minutes with precooling (61%; 95% confidence interval = 4, 25 minutes; P = .013), but it was not further extended when the strategies were combined (29 ± 21 minutes longer than control). During cycling without precooling or airflow, mean core and skin temperatures were higher than in all other trials. Precooling reduced heart rate by 7-11 beats/min during the first 5 minutes of exercise, but this attenuation ended by 15 minutes.
Most laboratory-based precooling studies have (inadvertently) overestimated the extent of the physiologic and ergogenic benefits for typical athlete-endurance situations. Precooling increases work capacity effectively when airflow is restricted but may have little or no benefit when airflow is present.
在多种热环境条件下,运动前对身体进行冷却(预冷)已作为一种提高运动能力的辅助手段进行了研究;然而,运动时伴随的气流情况却鲜有报道。
确定在炎热条件下,耐力运动前预冷带来的生理和提高运动能力的益处是否会因半真实气流而被抵消。
交叉研究。
研究实验室中的气候控制舱。
10名健康的自行车运动员。
在进行适应性试验后,参与者完成4次随机、平衡的试验,试验内容包括不进行预冷与进行预冷,以及运动期间不使用风扇气流与使用气流(约4.8米/秒)。预冷通过胸部深度浸入(约24°C)1小时或直至核心体温下降0.5°C来实现。然后,参与者在炎热环境(温度=30°C,相对湿度=50%)中以95%的通气阈值进行骑行,直至自愿疲劳、核心体温超过39.5°C或心率达到最大心率的95%以上。
通过核心体温(食管和直肠热敏电阻)和平均皮肤温度(10个部位的热敏电阻)评估热应激,通过心率和主观用力程度评级评估心血管应激。
耐力时间(无预冷和气流时为28±12分钟)在有气流时增加了30±23分钟(约109%;95%置信区间=12,45分钟;P<.001),在有预冷时增加了16±15分钟(约61%;95%置信区间=4,25分钟;P=.013),但当两种策略结合时,耐力时间并未进一步延长(比对照组延长29±21分钟)。在无预冷和气流的骑行过程中,平均核心体温和皮肤温度高于所有其他试验。预冷在运动的前5分钟使心率降低7 - 11次/分钟,但这种降低在15分钟时结束。
大多数基于实验室的预冷研究(无意中)高估了预冷对典型运动员耐力情况的生理和提高运动能力益处的程度。当气流受到限制时,预冷可有效提高工作能力,但当有气流存在时,预冷可能几乎没有益处或根本没有益处。