Suppr超能文献

气流对预冷生理和运动能力增强效应的重要性。

Importance of airflow for physiologic and ergogenic effects of precooling.

作者信息

Morrison Shawnda A, Cheung Stephen, Cotter James D

机构信息

University of Otago, Dunedin, New Zealand.

出版信息

J Athl Train. 2014 Sep-Oct;49(5):632-9. doi: 10.4085/1062-6050-49.3.27. Epub 2014 Aug 21.

Abstract

CONTEXT

Cooling the body before exercise (precooling) has been studied as an ergogenic aid for many thermal conditions; however, airflow accompanying exercise is seldom reported.

OBJECTIVE

To determine whether the physiologic and ergogenic benefits of precooling before endurance exercise may be negated with semirealistic airflow in hot conditions.

DESIGN

Crossover study.

SETTING

Climate-controlled chamber in a research laboratory.

PATIENTS OR OTHER PARTICIPANTS

Ten fit, healthy cyclists.

INTERVENTION(S): After a familiarization trial, participants completed 4 randomized, counterbalanced sessions consisting of no precooling versus precooling and no fan airflow versus airflow (4.8 m/s) during exercise. Precooling was via chest-deep immersion (24 °C) for 1 hour or until core temperature dropped 0.5 °C. Participants then cycled at 95% ventilatory threshold in a hot environment (temperature = 30 °C, relative humidity = 50%) until volitional exhaustion, core temperature reached >39.5 °C, or heart rate reached >95% of maximum.

MAIN OUTCOME MEASURE(S): Thermal strain was assessed via core temperature (esophageal and rectal thermistors) and mean skin temperature (thermistors at 10 sites) and cardiovascular strain via heart rate and ratings of perceived exertion.

RESULTS

Endurance time (28 ± 12 minutes without precooling or airflow) increased by 30 ± 23 minutes with airflow (109%; 95% confidence interval = 12, 45 minutes; P < .001) and by 16 ± 15 minutes with precooling (61%; 95% confidence interval = 4, 25 minutes; P = .013), but it was not further extended when the strategies were combined (29 ± 21 minutes longer than control). During cycling without precooling or airflow, mean core and skin temperatures were higher than in all other trials. Precooling reduced heart rate by 7-11 beats/min during the first 5 minutes of exercise, but this attenuation ended by 15 minutes.

CONCLUSIONS

Most laboratory-based precooling studies have (inadvertently) overestimated the extent of the physiologic and ergogenic benefits for typical athlete-endurance situations. Precooling increases work capacity effectively when airflow is restricted but may have little or no benefit when airflow is present.

摘要

背景

在多种热环境条件下,运动前对身体进行冷却(预冷)已作为一种提高运动能力的辅助手段进行了研究;然而,运动时伴随的气流情况却鲜有报道。

目的

确定在炎热条件下,耐力运动前预冷带来的生理和提高运动能力的益处是否会因半真实气流而被抵消。

设计

交叉研究。

地点

研究实验室中的气候控制舱。

受试者或其他参与者

10名健康的自行车运动员。

干预措施

在进行适应性试验后,参与者完成4次随机、平衡的试验,试验内容包括不进行预冷与进行预冷,以及运动期间不使用风扇气流与使用气流(约4.8米/秒)。预冷通过胸部深度浸入(约24°C)1小时或直至核心体温下降0.5°C来实现。然后,参与者在炎热环境(温度=30°C,相对湿度=50%)中以95%的通气阈值进行骑行,直至自愿疲劳、核心体温超过39.5°C或心率达到最大心率的95%以上。

主要观察指标

通过核心体温(食管和直肠热敏电阻)和平均皮肤温度(10个部位的热敏电阻)评估热应激,通过心率和主观用力程度评级评估心血管应激。

结果

耐力时间(无预冷和气流时为28±12分钟)在有气流时增加了30±23分钟(约109%;95%置信区间=12,45分钟;P<.001),在有预冷时增加了16±15分钟(约61%;95%置信区间=4,25分钟;P=.013),但当两种策略结合时,耐力时间并未进一步延长(比对照组延长29±21分钟)。在无预冷和气流的骑行过程中,平均核心体温和皮肤温度高于所有其他试验。预冷在运动的前5分钟使心率降低7 - 11次/分钟,但这种降低在15分钟时结束。

结论

大多数基于实验室的预冷研究(无意中)高估了预冷对典型运动员耐力情况的生理和提高运动能力益处的程度。当气流受到限制时,预冷可有效提高工作能力,但当有气流存在时,预冷可能几乎没有益处或根本没有益处。

相似文献

1
Importance of airflow for physiologic and ergogenic effects of precooling.
J Athl Train. 2014 Sep-Oct;49(5):632-9. doi: 10.4085/1062-6050-49.3.27. Epub 2014 Aug 21.
2
Cooling the neck region during exercise in the heat.
J Athl Train. 2011 Jan-Feb;46(1):61-8. doi: 10.4085/1062-6050-46.1.61.
3
Cooling Effectiveness of a Modified Cold-Water Immersion Method After Exercise-Induced Hyperthermia.
J Athl Train. 2016 Nov;51(11):946-951. doi: 10.4085/1062-6050-51.12.07. Epub 2016 Nov 22.
4
Effect of precooling on high intensity cycling performance.
Br J Sports Med. 1999 Dec;33(6):393-7. doi: 10.1136/bjsm.33.6.393.
5
Practical precooling: effect on cycling time trial performance in warm conditions.
J Sports Sci. 2008 Dec;26(14):1477-87. doi: 10.1080/02640410802298268.
6
Precooling, Hyperthermia, and Postexercise Cooling Rates in Humans Wearing American Football Uniforms.
J Athl Train. 2019 Jul;54(7):758-764. doi: 10.4085/1062-6050-175-18. Epub 2019 Jul 25.
7
Physiologic and Perceptual Responses to Cold-Shower Cooling After Exercise-Induced Hyperthermia.
J Athl Train. 2016 Mar;51(3):252-7. doi: 10.4085/1062-6050-51.4.01. Epub 2016 Mar 4.
8
Air velocity influences thermoregulation and endurance exercise capacity in the heat.
Appl Physiol Nutr Metab. 2018 Feb;43(2):131-138. doi: 10.1139/apnm-2017-0448. Epub 2017 Oct 6.
9
Self-paced exercise performance in the heat after pre-exercise cold-fluid ingestion.
J Athl Train. 2011 Nov-Dec;46(6):592-9. doi: 10.4085/1062-6050-46.6.592.
10
Cooling athletes before competition in the heat: comparison of techniques and practical considerations.
Sports Med. 2006;36(8):671-82. doi: 10.2165/00007256-200636080-00004.

引用本文的文献

1
Mixed pre-cooling improves thermal strain but not running performance in female endurance athletes exercising in the heat across the menstrual cycle.
Temperature (Austin). 2025 Feb 22;12(2):133-148. doi: 10.1080/23328940.2025.2465023. eCollection 2025.
2
Precooling via immersion in CO-enriched water at 25°C decreased core body temperature but did not improve 10-km cycling time trial in the heat.
Temperature (Austin). 2024 Jan 28;11(2):123-136. doi: 10.1080/23328940.2024.2302772. eCollection 2024.
5
Moving in a hotter world: Maintaining adequate childhood fitness as a climate change countermeasure.
Temperature (Austin). 2022 Aug 4;10(2):179-197. doi: 10.1080/23328940.2022.2102375. eCollection 2023.
6
Ecological rules for global species distribution also predict performance variation in Ironman triathletes.
PLoS One. 2023 May 10;18(5):e0283282. doi: 10.1371/journal.pone.0283282. eCollection 2023.
7
Effects of a Head-Cooling Cap on 5-Km Running Performance in the Heat.
Int J Exerc Sci. 2023 Feb 1;16(6):193-204. doi: 10.70252/TKAR7672. eCollection 2023.
8
Thermoregulatory responses during road races in hot-humid conditions at the 2019 Athletics World Championships.
J Appl Physiol (1985). 2023 May 1;134(5):1300-1311. doi: 10.1152/japplphysiol.00348.2022. Epub 2023 Apr 6.

本文引用的文献

1
Pre-cooling and sports performance: a meta-analytical review.
Sports Med. 2012 Jul 1;42(7):545-64. doi: 10.2165/11630550-000000000-00000.
2
Practical precooling: effect on cycling time trial performance in warm conditions.
J Sports Sci. 2008 Dec;26(14):1477-87. doi: 10.1080/02640410802298268.
3
Cooling athletes before competition in the heat: comparison of techniques and practical considerations.
Sports Med. 2006;36(8):671-82. doi: 10.2165/00007256-200636080-00004.
4
The effects of different air velocities on heat storage and body temperature in humans cycling in a hot, humid environment.
Acta Physiol Scand. 2005 Mar;183(3):241-55. doi: 10.1111/j.1365-201X.2004.01400.x.
5
Passive hyperthermia reduces voluntary activation and isometric force production.
Eur J Appl Physiol. 2004 May;91(5-6):729-36. doi: 10.1007/s00421-004-1063-z. Epub 2004 Mar 11.
6
Cooling vest worn during active warm-up improves 5-km run performance in the heat.
J Appl Physiol (1985). 2004 May;96(5):1867-74. doi: 10.1152/japplphysiol.00979.2003. Epub 2003 Dec 29.
7
Methods, advantages, and limitations of body cooling for exercise performance.
Br J Sports Med. 2002 Apr;36(2):89-94. doi: 10.1136/bjsm.36.2.89.
8
Hyperthermia and central fatigue during prolonged exercise in humans.
J Appl Physiol (1985). 2001 Sep;91(3):1055-60. doi: 10.1152/jappl.2001.91.3.1055.
9
Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions.
Eur J Appl Physiol. 2001 Jan-Feb;84(1-2):115-21. doi: 10.1007/s004210000340.
10
Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat.
Comp Biochem Physiol A Mol Integr Physiol. 2001 Apr;128(4):667-77. doi: 10.1016/s1095-6433(01)00273-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验