Suppr超能文献

疟原虫Rad51的显性负性突变体通过废除DNA双链断裂修复导致宿主体内寄生虫负荷降低。

Dominant negative mutant of Plasmodium Rad51 causes reduced parasite burden in host by abrogating DNA double-strand break repair.

作者信息

Roy Nabamita, Bhattacharyya Sunanda, Chakrabarty Swati, Laskar Shyamasree, Babu Somepalli Mastan, Bhattacharyya Mrinal Kanti

机构信息

Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Andhra Pradesh, India.

出版信息

Mol Microbiol. 2014 Oct;94(2):353-66. doi: 10.1111/mmi.12762. Epub 2014 Sep 5.

Abstract

Malaria parasites survive through repairing a plethora of DNA double-stranded breaks (DSBs) experienced during their asexual growth. In Plasmodium Rad51 mediated homologous recombination (HR) mechanism and homology-independent alternative end-joining mechanism have been identified. Here we address whether loss of HR activity can be compensated by other DSB repair mechanisms. Creating a transgenic Plasmodium line defective in HR function, we demonstrate that HR is the most important DSB repair pathway in malarial parasite. Using mouse malaria model we have characterized the dominant negative effect of PfRad51(K143R) mutant on Plasmodium DSB repair and host-parasite interaction. Our work illustrates that Plasmodium berghei harbouring the mutant protein (PfRad51(K143R)) failed to repair DSBs as evidenced by hypersensitivity to DNA-damaging agent. Mice infected with mutant parasites lived significantly longer with markedly reduced parasite burden. To better understand the effect of mutant PfRad51(K143R) on HR, we used yeast as a surrogate model and established that the presence of PfRad51(K143R) completely inhibited DNA repair, gene conversion and gene targeting. Biochemical experiment confirmed that very low level of mutant protein was sufficient for complete disruption of wild-type PfRad51 activity. Hence our work provides evidence that HR pathway of Plasmodium could be efficiently targeted to curb malaria.

摘要

疟原虫通过修复其无性繁殖过程中经历的大量DNA双链断裂(DSB)而存活。在疟原虫中,已鉴定出Rad51介导的同源重组(HR)机制和不依赖同源性的替代末端连接机制。在这里,我们探讨HR活性的丧失是否能被其他DSB修复机制所补偿。通过创建一个HR功能有缺陷的转基因疟原虫系,我们证明HR是疟原虫中最重要的DSB修复途径。利用小鼠疟疾模型,我们表征了PfRad51(K143R)突变体对疟原虫DSB修复和宿主-寄生虫相互作用的显性负效应。我们的研究表明,携带突变蛋白(PfRad51(K143R))的伯氏疟原虫无法修复DSB,这通过对DNA损伤剂的超敏反应得到证明。感染突变寄生虫的小鼠存活时间显著延长,寄生虫负担明显减轻。为了更好地理解突变体PfRad51(K143R)对HR的影响,我们以酵母作为替代模型,并确定PfRad51(K143R)的存在完全抑制了DNA修复、基因转换和基因靶向。生化实验证实,极低水平的突变蛋白就足以完全破坏野生型PfRad51的活性。因此,我们的研究提供了证据,表明疟原虫的HR途径可以成为有效遏制疟疾的靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验