Kyriakides Michael, Hardwick Rhiannon N, Jin Zhaosheng, Goedken Michael J, Holmes Elaine, Cherrington Nathan J, Coen Muireann
Biomolecular Medicine, Division of Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, USA.
Toxicol Sci. 2014 Nov;142(1):105-16. doi: 10.1093/toxsci/kfu160. Epub 2014 Aug 21.
Adverse drug reactions (ADRs) represent a significant clinical challenge with respect to patient morbidity and mortality. We investigated the hepatotoxicity and systems level metabolic phenotype of methotrexate (MTX) in the context of a prevalent liver disease; non-alcoholic steatohepatitis (NASH). A nuclear magnetic resonance spectroscopic-based metabonomic approach was employed to analyze the metabolic consequences of MTX (0, 10, 40, and 100 mg/kg) in the urine and liver of healthy rats (control diet) and in a model of NASH (methionine-choline deficient diet). Histopathological analysis confirmed baseline (0 mg/kg) liver necrosis, liver inflammation, and lipid accumulation in the NASH model. Administration of MTX (40 and 100 mg/kg) led to liver necrosis in the control cohort, whereas the NASH cohort also displayed biliary hyperplasia and liver fibrosis (100 mg/kg), providing evidence of the synergistic effect of MTX and NASH. The complementary hepatic and urinary metabolic phenotypes of the NASH model, at baseline, revealed perturbation of multiple metabolites associated with oxidative and energetic stress, and folate homeostasis. Administration of MTX in both diet cohorts showed dose-dependent metabolic consequences affecting gut microbial, energy, nucleobase, nucleoside, and folate metabolism. Furthermore, a unique panel of metabolic changes reflective of the synergistic effect of MTX and NASH was identified, including the elevation of hepatic phenylalanine, urocanate, acetate, and both urinary and hepatic formiminoglutamic acid. This systems level metabonomic analysis of the hepatotoxicity of MTX in the context of NASH provided novel mechanistic insight of potential wider clinical relevance for further understanding the role of liver pathology as a risk factor for ADRs.
药物不良反应(ADR)在患者发病率和死亡率方面构成了重大的临床挑战。我们在一种常见的肝脏疾病——非酒精性脂肪性肝炎(NASH)的背景下,研究了甲氨蝶呤(MTX)的肝毒性和系统水平的代谢表型。采用基于核磁共振波谱的代谢组学方法,分析MTX(0、10、40和100 mg/kg)对健康大鼠(对照饮食)以及NASH模型(蛋氨酸-胆碱缺乏饮食)尿液和肝脏的代谢影响。组织病理学分析证实了NASH模型中的基线(0 mg/kg)肝坏死、肝脏炎症和脂质蓄积。给予MTX(40和100 mg/kg)导致对照队列出现肝坏死,而NASH队列还表现出胆管增生和肝纤维化(100 mg/kg),这证明了MTX与NASH的协同作用。在基线时,NASH模型肝脏和尿液的互补代谢表型揭示了多种与氧化应激、能量应激和叶酸稳态相关的代谢物紊乱。在两个饮食队列中给予MTX均显示出剂量依赖性的代谢后果,影响肠道微生物、能量、核碱基、核苷和叶酸代谢。此外,还确定了一组反映MTX与NASH协同作用的独特代谢变化,包括肝脏苯丙氨酸、尿刊酸、乙酸盐以及尿液和肝脏中脒基谷氨酸的升高。这种在NASH背景下对MTX肝毒性进行的系统水平代谢组学分析,为进一步理解肝脏病理学作为ADR风险因素的作用提供了具有潜在更广泛临床相关性的新机制见解。