Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine Baltimore, MD, USA.
Geisinger Clinic, Geisinger Obesity Institute Danville, PA, USA.
Front Genet. 2014 Aug 5;5:222. doi: 10.3389/fgene.2014.00222. eCollection 2014.
A variety of health-related data are commonly deposited into electronic health records (EHRs), including laboratory, diagnostic, and medication information. The digital nature of EHR data facilitates efficient extraction of these data for research studies, including genome-wide association studies (GWAS). Previous GWAS have identified numerous SNPs associated with variation in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). These findings have led to the development of specialized genotyping platforms that can be used for fine-mapping and replication in other populations. We have combined the efficiency of EHR data and the economic advantages of the Illumina Metabochip, a custom designed SNP chip targeted to traits related to coronary artery disease, myocardial infarction, and type 2 diabetes, to conduct an array-wide analysis of lipid traits in a population with extreme obesity. Our analyses identified associations with 12 of 21 previously identified lipid-associated SNPs with effect sizes similar to prior results. Association analysis using several approaches to account for lipid-lowering medication use resulted in fewer and less strongly associated SNPs. The availability of phenotype data from the EHR and the economic efficiency of the specialized Metabochip can be exploited to conduct multi-faceted genetic association analyses.
各种与健康相关的数据通常被存入电子健康记录(EHRs)中,包括实验室、诊断和药物信息。EHR 数据的数字化性质便于为研究工作(包括全基因组关联研究(GWAS))高效地提取这些数据。先前的 GWAS 已经确定了许多与总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)和甘油三酯(TG)变化相关的 SNP。这些发现导致了专门的基因分型平台的发展,这些平台可用于在其他人群中进行精细映射和复制。我们结合了 EHR 数据的效率和 Illumina Metabochip 的经济优势,Illumina Metabochip 是一种定制设计的 SNP 芯片,针对与冠状动脉疾病、心肌梗死和 2 型糖尿病相关的特征,对极端肥胖人群的脂质特征进行了全基因组分析。我们的分析确定了与 21 个先前确定的与脂质相关 SNP 中的 12 个相关联,其效应大小与先前的结果相似。使用几种方法进行的关联分析,以考虑降脂药物的使用,导致 SNP 数量减少,关联性降低。EHR 中的表型数据的可用性和专门 Metabochip 的经济效率可以被利用来进行多方面的遗传关联分析。