Suppr超能文献

将隐孢子虫肌苷5'-单磷酸脱氢酶抑制剂重新用作潜在抗菌剂。

Repurposing cryptosporidium inosine 5'-monophosphate dehydrogenase inhibitors as potential antibacterial agents.

作者信息

Mandapati Kavitha, Gorla Suresh Kumar, House Amanda L, McKenney Elizabeth S, Zhang Minjia, Rao Suraj Nagendra, Gollapalli Deviprasad R, Mann Barbara J, Goldberg Joanna B, Cuny Gregory D, Glomski Ian J, Hedstrom Lizbeth

机构信息

Departments of Biology and Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, United States.

Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22908, United States.

出版信息

ACS Med Chem Lett. 2014 Jun 10;5(8):846-50. doi: 10.1021/ml500203p. eCollection 2014 Aug 14.

Abstract

Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. IMPDH is a target for immunosuppressive, antiviral, and anticancer drugs, but, as of yet, has not been exploited for antimicrobial therapy. We have previously reported potent inhibitors of IMPDH from the protozoan parasite Cryptosporidium parvum (CpIMPDH). Many pathogenic bacteria, including Bacillus anthracis, Staphylococcus aureus, and Listeria monocytogenes, contain IMPDHs that should also be inhibited by these compounds. Herein, we present the structure-activity relationships for the inhibition of B. anthracis IMPDH (BaIMPDH) and antibacterial activity of 140 compounds from five structurally distinct compound series. Many potent inhibitors of BaIMPDH were identified (78% with IC50 ≤ 1 μM). Four compounds had minimum inhibitory concentrations (MIC) of less than 2 μM against B. anthracis Sterne 770. These compounds also displayed antibacterial activity against S. aureus and L. monocytogenes.

摘要

肌苷5'-单磷酸脱氢酶(IMPDH)催化鸟嘌呤核苷酸生物合成中的关键步骤。IMPDH是免疫抑制、抗病毒和抗癌药物的作用靶点,但迄今为止尚未用于抗菌治疗。我们之前报道了原生动物寄生虫微小隐孢子虫(CpIMPDH)中IMPDH的强效抑制剂。许多病原菌,包括炭疽芽孢杆菌、金黄色葡萄球菌和单核细胞增生李斯特菌,都含有IMPDH,这些化合物也应能抑制它们。在此,我们展示了五个结构不同的化合物系列中140种化合物对炭疽芽孢杆菌IMPDH(BaIMPDH)的抑制作用的构效关系以及抗菌活性。鉴定出了许多BaIMPDH的强效抑制剂(78%的IC50≤1μM)。四种化合物对炭疽芽孢杆菌Sterne 770的最低抑菌浓度(MIC)小于2μM。这些化合物对金黄色葡萄球菌和单核细胞增生李斯特菌也显示出抗菌活性。

相似文献

1
Repurposing cryptosporidium inosine 5'-monophosphate dehydrogenase inhibitors as potential antibacterial agents.
ACS Med Chem Lett. 2014 Jun 10;5(8):846-50. doi: 10.1021/ml500203p. eCollection 2014 Aug 14.
2
A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.
J Biol Chem. 2015 Feb 27;290(9):5893-911. doi: 10.1074/jbc.M114.619767. Epub 2015 Jan 8.
3
The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors.
Curr Med Chem. 2011;18(13):1909-18. doi: 10.2174/092986711795590129.
4
Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.
J Med Chem. 2013 May 23;56(10):4028-43. doi: 10.1021/jm400241j. Epub 2013 May 13.
6
Repurposing existing drugs: identification of irreversible IMPDH inhibitors by high-throughput screening.
J Enzyme Inhib Med Chem. 2019 Dec;34(1):171-178. doi: 10.1080/14756366.2018.1540474.
7
The Enzymatic Activity of Inosine 5'-Monophosphate Dehydrogenase May Not Be a Vulnerable Target for Infections.
ACS Infect Dis. 2021 Nov 12;7(11):3062-3076. doi: 10.1021/acsinfecdis.1c00342. Epub 2021 Sep 30.
8
Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH.
Bioorg Med Chem Lett. 2012 Mar 1;22(5):1985-8. doi: 10.1016/j.bmcl.2012.01.029. Epub 2012 Jan 24.
9
Mycophenolic anilides as broad specificity inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors.
Bioorg Med Chem Lett. 2020 Dec 15;30(24):127543. doi: 10.1016/j.bmcl.2020.127543. Epub 2020 Sep 12.
10
Selective and potent urea inhibitors of cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.
J Med Chem. 2012 Sep 13;55(17):7759-71. doi: 10.1021/jm3007917. Epub 2012 Sep 5.

引用本文的文献

1
Repurposing Diflunisal as an Antivirulence Agent Against .
Infect Microbes Dis. 2025 Mar;7(1):43-53. doi: 10.1097/im9.0000000000000174. Epub 2025 Jan 27.
2
Effect of urea and squaramide IMPDH inhibitors on C. parvum: in vitro trial design impacts the assessment of drug efficacy.
Int J Parasitol Drugs Drug Resist. 2025 Apr 15;28:100592. doi: 10.1016/j.ijpddr.2025.100592.
3
Role of the Mobile Active Site Flap in IMP Dehydrogenase Inhibitor Binding.
ACS Infect Dis. 2025 Feb 14;11(2):442-452. doi: 10.1021/acsinfecdis.4c00636. Epub 2025 Jan 29.
4
Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202414325. doi: 10.1002/anie.202414325. Epub 2025 Feb 10.
5
New antibacterial candidates against Acinetobacter baumannii discovered by in silico-driven chemogenomics repurposing.
PLoS One. 2024 Sep 26;19(9):e0307913. doi: 10.1371/journal.pone.0307913. eCollection 2024.
6
The Enzymatic Activity of Inosine 5'-Monophosphate Dehydrogenase May Not Be a Vulnerable Target for Infections.
ACS Infect Dis. 2021 Nov 12;7(11):3062-3076. doi: 10.1021/acsinfecdis.1c00342. Epub 2021 Sep 30.
7
Design and Synthesis of "Chloropicolinate Amides and Urea Derivatives" as Novel Inhibitors for .
ACS Omega. 2021 Jan 7;6(2):1657-1667. doi: 10.1021/acsomega.0c05690. eCollection 2021 Jan 19.
8
Mycophenolic anilides as broad specificity inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors.
Bioorg Med Chem Lett. 2020 Dec 15;30(24):127543. doi: 10.1016/j.bmcl.2020.127543. Epub 2020 Sep 12.
10
Inhibitors of inosine 5'-monophosphate dehydrogenase as emerging new generation antimicrobial agents.
Medchemcomm. 2019 May 2;10(8):1290-1301. doi: 10.1039/c9md00179d. eCollection 2019 Aug 1.

本文引用的文献

1
New antibiotics for bad bugs: where are we?
Ann Clin Microbiol Antimicrob. 2013 Aug 28;12:22. doi: 10.1186/1476-0711-12-22.
2
Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.
J Med Chem. 2013 May 23;56(10):4028-43. doi: 10.1021/jm400241j. Epub 2013 May 13.
3
Structure of Pseudomonas aeruginosa inosine 5'-monophosphate dehydrogenase.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Mar 1;69(Pt 3):243-7. doi: 10.1107/S1744309113002352. Epub 2013 Feb 22.
4
Phthalazinone inhibitors of inosine-5'-monophosphate dehydrogenase from Cryptosporidium parvum.
Bioorg Med Chem Lett. 2013 Feb 15;23(4):1004-7. doi: 10.1016/j.bmcl.2012.12.037. Epub 2012 Dec 27.
5
Selective and potent urea inhibitors of cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.
J Med Chem. 2012 Sep 13;55(17):7759-71. doi: 10.1021/jm3007917. Epub 2012 Sep 5.
6
Identification of novel Mt-Guab2 inhibitor series active against M. tuberculosis.
PLoS One. 2012;7(3):e33886. doi: 10.1371/journal.pone.0033886. Epub 2012 Mar 29.
7
Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH.
Bioorg Med Chem Lett. 2012 Mar 1;22(5):1985-8. doi: 10.1016/j.bmcl.2012.01.029. Epub 2012 Jan 24.
8
The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors.
Curr Med Chem. 2011;18(13):1909-18. doi: 10.2174/092986711795590129.
9
Structural determinants of inhibitor selectivity in prokaryotic IMP dehydrogenases.
Chem Biol. 2010 Oct 29;17(10):1084-91. doi: 10.1016/j.chembiol.2010.07.014.
10
A screening pipeline for antiparasitic agents targeting cryptosporidium inosine monophosphate dehydrogenase.
PLoS Negl Trop Dis. 2010 Aug 10;4(8):e794. doi: 10.1371/journal.pntd.0000794.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验