Suppr超能文献

红外光的波前屈光与主观验光之间的差异。

Differences between wavefront and subjective refraction for infrared light.

作者信息

Teel Danielle F W, Jacobs Robert J, Copland James, Neal Daniel R, Thibos Larry N

机构信息

*OD, PhD, FAAO †MSc(Optom), PhD, FAAO ‡BS §PhD ∥PhD, FAAO Indiana University School of Optometry, Bloomington, Indiana (DFWT, LNT); Department of Optometry, University of Auckland, Auckland, New Zealand (RJJ); and Wavefront Sciences, Inc, Albuquerque, New Mexico (JC, DRN).

出版信息

Optom Vis Sci. 2014 Oct;91(10):1158-66. doi: 10.1097/OPX.0000000000000370.

Abstract

PURPOSE

To determine the accuracy of objective wavefront refractions for predicting subjective refractions for monochromatic infrared light.

METHODS

Objective refractions were obtained with a commercial wavefront aberrometer (COAS, Wavefront Sciences). Subjective refractions were obtained for 30 subjects with a speckle optometer validated against objective Zernike wavefront refractions on a physical model eye (Teel et al., Design and validation of an infrared Badal optometer for laser speckle, Optom Vis Sci 2008;85:834-42). Both instruments used near-infrared (NIR) radiation (835 nm for COAS, 820 nm for the speckle optometer) to avoid correction for ocular chromatic aberration. A 3-mm artificial pupil was used to reduce complications attributed to higher-order ocular aberrations. For comparison with paraxial (Seidel) and minimum root-mean-square (Zernike) wavefront refractions, objective refractions were also determined for a battery of 29 image quality metrics by computing the correcting lens that optimizes retinal image quality.

RESULTS

Objective Zernike refractions were more myopic than subjective refractions for 29 of 30 subjects. The population mean discrepancy was -0.26 diopters (D) (SEM = 0.03 D). Paraxial (Seidel) objective refractions tended to be hyperopically biased (mean discrepancy = +0.20 D, SEM = 0.06 D). Refractions based on retinal image quality were myopically biased for 28 of 29 metrics. The mean bias across all 31 measures was -0.24 D (SEM = 0.03). Myopic bias of objective refractions was greater for eyes with brown irises compared with eyes with blue irises.

CONCLUSIONS

Our experimental results are consistent with the hypothesis that reflected NIR light captured by the aberrometer originates from scattering sources located posterior to the entrance apertures of cone photoreceptors, near the retinal pigment epithelium. The larger myopic bias for brown eyes suggests that a greater fraction of NIR light is reflected from choroidal melanin in brown eyes compared with blue eyes.

摘要

目的

确定客观波前屈光不正预测单色红外光主观屈光不正的准确性。

方法

使用商用波前像差仪(COAS,Wavefront Sciences)获得客观屈光不正数据。对30名受试者使用经物理模型眼上客观泽尼克波前屈光不正验证的散斑验光仪获得主观屈光不正数据(Teel等人,用于激光散斑的红外巴达尔验光仪的设计与验证,Optom Vis Sci 2008;85:834 - 42)。两种仪器均使用近红外(NIR)辐射(COAS为835 nm,散斑验光仪为820 nm)以避免对眼色差进行校正。使用3毫米人工瞳孔以减少高阶眼像差引起的并发症。为了与傍轴(赛德尔)和最小均方根(泽尼克)波前屈光不正进行比较,还通过计算优化视网膜图像质量的校正透镜,为一组29个图像质量指标确定了客观屈光不正数据。

结果

30名受试者中有29名的客观泽尼克屈光不正比主观屈光不正更近视。总体平均差异为 -0.26屈光度(D)(标准误 = 0.03 D)。傍轴(赛德尔)客观屈光不正倾向于远视性偏差(平均差异 = +0.20 D,标准误 = 0.06 D)。基于视网膜图像质量的屈光不正对于29个指标中的28个存在近视性偏差。所有31项测量的平均偏差为 -0.24 D(标准误 = 0.03)。与蓝色虹膜的眼睛相比,棕色虹膜的眼睛的客观屈光不正的近视性偏差更大。

结论

我们的实验结果与以下假设一致,即像差仪捕获的反射近红外光源自位于视锥光感受器入口孔径后方、靠近视网膜色素上皮的散射源。棕色眼睛较大的近视性偏差表明,与蓝色眼睛相比,棕色眼睛中更大比例的近红外光是从脉络膜黑色素反射而来的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验