Taranova Maryna, Hirsh Andrew D, Perkins Noel C, Andricioaei Ioan
Department of Chemistry, University of California , 1102 Natural Sciences 2, Irvine, California 92697, United States.
J Phys Chem B. 2014 Sep 25;118(38):11028-36. doi: 10.1021/jp502233u. Epub 2014 Sep 16.
The genetic material in living cells is organized into complex structures in which DNA is subjected to substantial contortions. Here we investigate the difference in structure, dynamics, and flexibility between two topological states of a short (107 base pair) DNA sequence in a linear form and a covalently closed, tightly curved circular DNA form. By employing a combination of all-atom molecular dynamics (MD) simulations and elastic rod modeling of DNA, which allows capturing microscopic details while monitoring the global dynamics, we demonstrate that in the highly curved regime the microscopic flexibility of the DNA drastically increases due to the local mobility of the duplex. By analyzing vibrational entropy and Lipari-Szabo NMR order parameters from the simulation data, we propose a novel model for the thermodynamic stability of high-curvature DNA states based on vibrational untightening of the duplex. This novel view of DNA bending provides a fundamental explanation that bridges the gap between classical models of DNA and experimental studies on DNA cyclization, which so far have been in substantial disagreement.
活细胞中的遗传物质被组织成复杂的结构,其中DNA会受到大量扭曲。在这里,我们研究了短(107个碱基对)线性DNA序列的两种拓扑状态与共价闭合、紧密弯曲的环状DNA形式之间在结构、动力学和灵活性方面的差异。通过结合全原子分子动力学(MD)模拟和DNA的弹性杆建模,这使得在监测全局动力学的同时能够捕捉微观细节,我们证明在高度弯曲的状态下,由于双链体的局部移动性,DNA的微观灵活性急剧增加。通过分析模拟数据中的振动熵和Lipari-Szabo NMR序参量,我们基于双链体的振动松弛提出了一种关于高曲率DNA状态热力学稳定性的新模型。这种关于DNA弯曲的新观点提供了一个基本解释,弥合了经典DNA模型与迄今为止存在重大分歧的DNA环化实验研究之间的差距。