Choi Jaeyeon, Vaidyanathan Ganesan, Koumarianou Eftychia, McDougald Darryl, Pruszynski Marek, Osada Takuya, Lahoutte Tony, Lyerly H Kim, Zalutsky Michael R
Department of Radiology, Duke University Medical Center, Durham, NC, USA.
Department of Radiology, Duke University Medical Center, Durham, NC, USA.
Nucl Med Biol. 2014 Nov-Dec;41(10):802-12. doi: 10.1016/j.nucmedbio.2014.07.005. Epub 2014 Aug 1.
N-succinimidyl 4-guanidinomethyl-3-[()I]iodobenzoate ([()I]SGMIB) has shown promise for the radioiodination of monoclonal antibodies (mAbs) and other proteins that undergo extensive internalization after receptor binding, enhancing tumor targeting compared to direct electrophilic radioiodination. However, radiochemical yields for [(131)I]SGMIB synthesis are low, which we hypothesize is due to steric hindrance from the Boc-protected guanidinomethyl group ortho to the tin moiety. To overcome this, we developed the isomeric compound, N-succinimidyl 3-guanidinomethyl-5-[(131)I]iodobenzoate (iso-[(131)I]SGMIB) wherein this bulky group was moved from ortho to meta position.
Boc2-iso-SGMIB standard and its tin precursor, N-succinimidyl 3-((1,2-bis(tert-butoxycarbonyl)guanidino)methyl)-5-(trimethylstannyl)benzoate (Boc2-iso-SGMTB), were synthesized using two disparate routes, and iso-[I]SGMIB synthesized from the tin precursor. Two HER2-targeted vectors - trastuzumab (Tras) and a nanobody 5F7 (Nb) - were labeled using iso-[()I]SGMIB and [(*)I]SGMIB. Paired-label internalization assays in vitro with both proteins, and biodistribution in vivo with trastuzumab, labeled using the two isomeric prosthetic agents were performed.
When the reactions were performed under identical conditions, radioiodination yields for the synthesis of Boc2-iso-[(131)I]SGMIB were significantly higher than those for Boc2-[(131)I]SGMIB (70.7±2.0% vs 56.5±5.5%). With both Nb and trastuzumab, conjugation efficiency also was higher with iso-[(131)I]SGMIB than with [(131)I]SGMIB (Nb, 33.1±7.1% vs 28.9±13.0%; Tras, 45.1±4.5% vs 34.8±10.3%); however, the differences were not statistically significant. Internalization assays performed on BT474 cells with 5F7 Nb indicated similar residualizing capacity over 6h; however, at 24h, radioactivity retained intracellularly for iso-[(131)I]SGMIB-Nb was lower than for [(125)I]SGMIB-Nb (46.4±1.3% vs 56.5±2.5%); similar results were obtained using Tras. Likewise, a paired-label biodistribution of Tras labeled using iso-[(125)I]SGMIB and [(131)I]SGMIB indicated an up to 22% tumor uptake advantage at later time points for [(131)I]SGMIB-Tras.
Given the higher labeling efficiency obtained with iso-SGMIB, this residualizing agent might be of value for use with shorter half-life radiohalogens.
N-琥珀酰亚胺基-4-胍基甲基-3-[[*I]碘苯甲酸酯([(*I]SGMIB)已显示出用于单克隆抗体(mAb)和其他在受体结合后经历广泛内化的蛋白质的放射性碘化的前景,与直接亲电放射性碘化相比,可增强肿瘤靶向性。然而,[(131)I]SGMIB合成的放射化学产率较低,我们推测这是由于与锡部分邻位的Boc保护的胍基甲基存在空间位阻。为克服这一问题,我们开发了异构体化合物N-琥珀酰亚胺基-3-胍基甲基-5-[(131)I]碘苯甲酸酯(iso-[(131)I]SGMIB),其中这个庞大的基团从邻位移到了间位。
使用两条不同的路线合成了Boc2-iso-SGMIB标准品及其锡前体N-琥珀酰亚胺基-3-((1,2-双(叔丁氧羰基)胍基)甲基)-5-(三甲基锡基)苯甲酸酯(Boc2-iso-SGMTB),并从锡前体合成了iso-[I]SGMIB。使用iso-[()I]SGMIB和[(*)I]SGMIB对两种HER2靶向载体——曲妥珠单抗(Tras)和纳米抗体5F7(Nb)进行标记。对这两种蛋白质进行了体外配对标记内化试验,并用这两种异构体修饰剂标记的曲妥珠单抗进行了体内生物分布试验。
在相同条件下进行反应时,Boc2-iso-[(131)I]SGMIB合成的放射性碘化产率显著高于Boc2-[(131)I]SGMIB(70.7±2.0%对56.5±5.5%)。对于Nb和曲妥珠单抗,iso-[(131)I]SGMIB的偶联效率也高于[(131)I]SGMIB(Nb:33.1±7.1%对28.9±13.0%;Tras:45.1±4.5%对34.8±10.3%);然而,差异无统计学意义。用5F7 Nb对BT474细胞进行的内化试验表明,在6小时内具有相似的残留能力;然而,在24小时时,iso-[(131)I]SGMIB-Nb细胞内保留的放射性低于[(125)I]SGMIB-Nb(46.4±1.3%对56.5±2.5%);使用Tras也获得了类似结果。同样,用iso-[(125)I]SGMIB和[(131)I]SGMIB标记的Tras的配对标记生物分布表明,在后期时间点,[(131)I]SGMIB-Tras的肿瘤摄取优势高达22%。
鉴于iso-SGMIB具有更高的标记效率,这种残留剂可能对使用半衰期较短的放射性卤素具有价值。