文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Radiolabeling Strategies of Nanobodies for Imaging Applications.

作者信息

Küppers Jim, Kürpig Stefan, Bundschuh Ralph A, Essler Markus, Lütje Susanne

机构信息

Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany.

出版信息

Diagnostics (Basel). 2021 Aug 25;11(9):1530. doi: 10.3390/diagnostics11091530.


DOI:10.3390/diagnostics11091530
PMID:34573872
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8471529/
Abstract

Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/9b0a91629d3f/diagnostics-11-01530-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/6c35204debf8/diagnostics-11-01530-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/564bfa458ff1/diagnostics-11-01530-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/d4a6220bc9e2/diagnostics-11-01530-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/d6175810b14f/diagnostics-11-01530-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/821e1139aecf/diagnostics-11-01530-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/04d535b5cc35/diagnostics-11-01530-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/bc19115610f1/diagnostics-11-01530-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/319256a708dc/diagnostics-11-01530-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/aca2cf9ffb61/diagnostics-11-01530-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/7f2fcd1c42a2/diagnostics-11-01530-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/82491c6cbe42/diagnostics-11-01530-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/8c5a63ef4307/diagnostics-11-01530-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/00bb9431bb86/diagnostics-11-01530-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/ebb9a92d2e9d/diagnostics-11-01530-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/726cb7e92187/diagnostics-11-01530-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/9b0a91629d3f/diagnostics-11-01530-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/6c35204debf8/diagnostics-11-01530-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/564bfa458ff1/diagnostics-11-01530-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/d4a6220bc9e2/diagnostics-11-01530-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/d6175810b14f/diagnostics-11-01530-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/821e1139aecf/diagnostics-11-01530-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/04d535b5cc35/diagnostics-11-01530-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/bc19115610f1/diagnostics-11-01530-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/319256a708dc/diagnostics-11-01530-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/aca2cf9ffb61/diagnostics-11-01530-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/7f2fcd1c42a2/diagnostics-11-01530-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/82491c6cbe42/diagnostics-11-01530-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/8c5a63ef4307/diagnostics-11-01530-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/00bb9431bb86/diagnostics-11-01530-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/ebb9a92d2e9d/diagnostics-11-01530-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/726cb7e92187/diagnostics-11-01530-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b0/8471529/9b0a91629d3f/diagnostics-11-01530-g016.jpg

相似文献

[1]
Radiolabeling Strategies of Nanobodies for Imaging Applications.

Diagnostics (Basel). 2021-8-25

[2]
[Tc]Epidermal growth factor receptor–specific nanobody

2004

[3]
Tumor-specific near-infrared nanobody probe rapidly labels tumors in an orthotopic mouse model of pancreatic cancer.

Surgery. 2020-5-4

[4]
Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody.

Theranostics. 2014-4-25

[5]
Development and evaluation of nanobody tracers for noninvasive nuclear imaging of the immune-checkpoint TIGIT.

Front Immunol. 2023

[6]
Nanobodies as versatile tools: A focus on targeted tumor therapy, tumor imaging and diagnostics.

Hum Antibodies. 2020

[7]
Nanobodies as tools for in vivo imaging of specific immune cell types.

J Nucl Med. 2010-4-15

[8]
A Novel ¹¹¹In-Labeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer.

J Nucl Med. 2015-5-14

[9]
In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/micro-CT.

J Nucl Med. 2010-6-16

[10]
Tc(CO)-Anti-carcinoembryonic antigen (CEA) humanized CEA5 graft nanobody

2004

引用本文的文献

[1]
PET imaging of HIV-1 envelope protein gp120 using F-labeled nanobodies.

iScience. 2025-1-13

[2]
A single-domain antibody for the detection of pathological Tau protein in the early stages of oligomerization.

J Transl Med. 2024-2-16

[3]
Use of pyridazinediones for tuneable and reversible covalent cysteine modification applied to peptides, proteins and hydrogels.

Chem Sci. 2023-11-1

[4]
Targeted Alpha Therapy (TAT) with Single-Domain Antibodies (Nanobodies).

Cancers (Basel). 2023-7-4

[5]
Development of anti-membrane type 1-matrix metalloproteinase nanobodies as immunoPET probes for triple negative breast cancer imaging.

Front Med (Lausanne). 2022-11-24

[6]
Site-Specific Radiohalogenation of a HER2-Targeted Single-Domain Antibody Fragment Using a Novel Residualizing Prosthetic Agent.

J Med Chem. 2022-11-24

[7]
Fully automated F-fluorination of N-succinimidyl-4-[F]fluorobenzoate ([F]SFB) for indirect labelling of nanobodies.

Sci Rep. 2022-11-4

本文引用的文献

[1]
Nanobodies as non-invasive imaging tools.

Immunooncol Technol. 2020-7-9

[2]
Site-Specific Radiolabeling of a Human PD-L1 Nanobody via Maleimide-Cysteine Chemistry.

Pharmaceuticals (Basel). 2021-6-8

[3]
Labeling single domain antibody fragments with F using a novel residualizing prosthetic agent - N-succinimidyl 3-(1-(2-(2-(2-(2-[F]fluoroethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-5-(guanidinomethyl)benzoate.

Nucl Med Biol. 2021

[4]
ImmunoPET of CD38 with a radiolabeled nanobody: promising for clinical translation.

Eur J Nucl Med Mol Imaging. 2021-8

[5]
PET Molecular Imaging: A Holistic Review of Current Practice and Emerging Perspectives for Diagnosis, Therapeutic Evaluation and Prognosis in Clinical Oncology.

Int J Mol Sci. 2021-4-16

[6]
Single-Domain Antibody Nuclear Imaging Allows Noninvasive Quantification of LAG-3 Expression by Tumor-Infiltrating Leukocytes and Predicts Response of Immune Checkpoint Blockade.

J Nucl Med. 2021-11

[7]
ImmunoPET imaging of human CD8 T cells with novel Ga-labeled nanobody companion diagnostic agents.

J Nanobiotechnology. 2021-2-9

[8]
ImmunoPET imaging of multiple myeloma with [Ga]Ga-NOTA-Nb1053.

Eur J Nucl Med Mol Imaging. 2021-8

[9]
Characterization of activation induced [18]F-FDG uptake in Dendritic Cells.

Nuklearmedizin. 2021-4

[10]
Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy.

J Immunother Cancer. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索