Suppr超能文献

间充质干细胞分化过程中细胞内流变学和细胞外作用力的空间协调变化。

Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation.

作者信息

McAndrews Kathleen M, McGrail Daniel J, Quach Nhat D, Dawson Michelle R

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Phys Biol. 2014 Aug 26;11(5):056004. doi: 10.1088/1478-3975/11/5/056004.

Abstract

The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in the level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation.

摘要

细胞内的力学特性由肌动蛋白细胞骨架的组织来调节,肌动蛋白细胞骨架通过传递力的粘着斑蛋白与细胞外环境相连。化学和机械刺激会改变细胞骨架肌动蛋白的组织,进而导致细胞形状、粘附和分化的变化。通过结合粒子追踪微流变学和牵引力细胞术,我们可以监测肌动蛋白网络的力学特性,并确定细胞内网络的变化如何影响力的产生。在本研究中,我们调查了间充质干细胞(MSC)分化过程中重要的化学(分化因子)和机械(基质硬度)刺激对细胞内力学和牵引力产生的影响。我们发现,无论基质硬度如何,脂肪生成因子的存在都会导致肌动蛋白网络变硬。相比之下,这些因子会增加硬基质上的牵引力,这与收缩性基因表达增加有关。此外,在硬基质上培养的间充质干细胞表达了表明混合分化的脂肪生成和成骨标记物。在硬基质上,局部弹性模量与牵引力相关性的异质性也因脂肪生成因子而增加,这表明这些力学特性可能反映了间充质干细胞分化水平的差异。这些结果表明,细胞内流变学和牵引力的产生在空间上受到调节,有助于深入了解单细胞机械力如何促进间充质干细胞的分化。

相似文献

2
Mesenchymal stem cell mechanics from the attached to the suspended state.
Biophys J. 2010 Oct 20;99(8):2479-87. doi: 10.1016/j.bpj.2010.08.052.
6
Focal adhesion and actin orientation regulated by cellular geometry determine stem cell differentiation via mechanotransduction.
Acta Biomater. 2024 Jul 1;182:81-92. doi: 10.1016/j.actbio.2024.05.017. Epub 2024 May 9.
7
The consequence of substrates of large-scale rigidity on actin network tension in adherent cells.
Comput Methods Biomech Biomed Engin. 2019 Oct;22(13):1073-1082. doi: 10.1080/10255842.2019.1629428. Epub 2019 Jun 17.
8
The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β.
Biomaterials. 2011 Jun;32(16):3921-30. doi: 10.1016/j.biomaterials.2011.02.019.
9
Lineage Commitment, Signaling Pathways, and the Cytoskeleton Systems in Mesenchymal Stem Cells.
Tissue Eng Part B Rev. 2020 Feb;26(1):13-25. doi: 10.1089/ten.TEB.2019.0250. Epub 2019 Nov 26.
10
Altered osteogenic commitment of human mesenchymal stem cells by ERM protein-dependent modulation of cellular biomechanics.
J Biomech. 2011 Oct 13;44(15):2692-8. doi: 10.1016/j.jbiomech.2011.07.024. Epub 2011 Aug 23.

引用本文的文献

1
Vimentin Intermediate Filaments Mediate Cell Morphology on Viscoelastic Substrates.
ACS Appl Bio Mater. 2022 Feb 21;5(2):552-561. doi: 10.1021/acsabm.1c01046. Epub 2022 Jan 7.
3
Interphase Chromatin Undergoes a Local Sol-Gel Transition upon Cell Differentiation.
Phys Rev Lett. 2021 Jun 4;126(22):228101. doi: 10.1103/PhysRevLett.126.228101.
4
Microrheology for biomaterial design.
APL Bioeng. 2020 Dec 29;4(4):041508. doi: 10.1063/5.0013707. eCollection 2020 Dec.

本文引用的文献

1
Architectural and mechanical cues direct mesenchymal stem cell interactions with crosslinked gelatin scaffolds.
Tissue Eng Part A. 2014 Dec;20(23-24):3252-60. doi: 10.1089/ten.TEA.2013.0753.
2
The malignancy of metastatic ovarian cancer cells is increased on soft matrices through a mechanosensitive Rho-ROCK pathway.
J Cell Sci. 2014 Jun 15;127(Pt 12):2621-6. doi: 10.1242/jcs.144378. Epub 2014 Apr 16.
3
Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells.
PLoS One. 2013 Oct 18;8(10):e77077. doi: 10.1371/journal.pone.0077077. eCollection 2013.
5
Cellular response to substrate rigidity is governed by either stress or strain.
Biophys J. 2013 Jan 8;104(1):19-29. doi: 10.1016/j.bpj.2012.11.3805.
6
Biomechanical analysis predicts decreased human mesenchymal stem cell function before molecular differences.
Exp Cell Res. 2013 Mar 10;319(5):684-96. doi: 10.1016/j.yexcr.2012.11.017. Epub 2012 Dec 7.
7
Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):E1523-9. doi: 10.1073/pnas.1120349109. Epub 2012 May 21.
9
Differential mechanical response of mesenchymal stem cells and fibroblasts to tumor-secreted soluble factors.
PLoS One. 2012;7(3):e33248. doi: 10.1371/journal.pone.0033248. Epub 2012 Mar 16.
10
High-throughput ballistic injection nanorheology to measure cell mechanics.
Nat Protoc. 2012 Jan 5;7(1):155-70. doi: 10.1038/nprot.2011.436.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验