Suppr超能文献

反对大肠杆菌乙酰辅酶A羧化酶羧基转移酶组分介导的翻译抑制作用的证据。

Evidence against translational repression by the carboxyltransferase component of Escherichia coli acetyl coenzyme A carboxylase.

作者信息

Smith Alexander C, Cronan John E

机构信息

Department of Microbiology, University of Illinois, Urbana, Illinois, USA.

Department of Microbiology, University of Illinois, Urbana, Illinois, USA Department of Biochemistry, University of Illinois, Urbana, Illinois, USA

出版信息

J Bacteriol. 2014 Nov;196(21):3768-75. doi: 10.1128/JB.02091-14. Epub 2014 Aug 25.

Abstract

In Escherichia coli, synthesis of the malonyl coenzyme A (malonyl-CoA) required for membrane lipid synthesis is catalyzed by acetyl-CoA carboxylase, a large complex composed of four subunits. The subunit proteins are needed in a defined stoichiometry, and it remains unclear how such production is achieved since the proteins are encoded at three different loci. Meades and coworkers (G. Meades, Jr., B. K. Benson, A. Grove, and G. L. Waldrop, Nucleic Acids Res. 38:1217-1227, 2010, doi:http://dx.doi.org/10.1093/nar/gkp1079) reported that coordinated production of the AccA and AccD subunits is due to a translational repression mechanism exerted by the proteins themselves. The AccA and AccD subunits form the carboxyltransferase (CT) heterotetramer that catalyzes the second partial reaction of acetyl-CoA carboxylase. Meades et al. reported that CT tetramers bind the central portions of the accA and accD mRNAs and block their translation in vitro. However, long mRNA molecules (500 to 600 bases) were required for CT binding, but such long mRNA molecules devoid of ribosomes seemed unlikely to exist in vivo. This, plus problematical aspects of the data reported by Meades and coworkers, led us to perform in vivo experiments to test CT tetramer-mediated translational repression of the accA and accD mRNAs. We report that increased levels of CT tetramer have no detectable effect on translation of the CT subunit mRNAs.

摘要

在大肠杆菌中,膜脂合成所需的丙二酰辅酶A(丙二酰 - CoA)的合成由乙酰辅酶A羧化酶催化,该酶是一种由四个亚基组成的大型复合物。亚基蛋白需要以特定的化学计量比存在,由于这些蛋白在三个不同的基因座编码,目前尚不清楚这种生产是如何实现的。米兹和同事们(小G. 米兹、B. K. 本森、A. 格罗夫和G. L. 沃尔德罗普,《核酸研究》38:1217 - 1227,2010,doi:http://dx.doi.org/10.1093/nar/gkp1079)报道,AccA和AccD亚基的协同产生是由于蛋白质自身施加的翻译抑制机制。AccA和AccD亚基形成催化乙酰辅酶A羧化酶第二个部分反应的羧基转移酶(CT)异源四聚体。米兹等人报道,CT四聚体结合accA和accD mRNA的中央部分并在体外阻断它们的翻译。然而,CT结合需要长mRNA分子(500至600个碱基),但这种不含核糖体的长mRNA分子似乎不太可能在体内存在。这一点,再加上米兹及其同事报道的数据存在问题,促使我们进行体内实验,以测试CT四聚体介导的accA和accD mRNA的翻译抑制作用。我们报道,CT四聚体水平的增加对CT亚基mRNA的翻译没有可检测到的影响。

相似文献

2
A tale of two functions: enzymatic activity and translational repression by carboxyltransferase.
Nucleic Acids Res. 2010 Mar;38(4):1217-27. doi: 10.1093/nar/gkp1079. Epub 2009 Dec 3.
5
Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
Biochemistry. 2013 May 14;52(19):3346-57. doi: 10.1021/bi4000707. Epub 2013 May 1.
6
Expression of two Escherichia coli acetyl-CoA carboxylase subunits is autoregulated.
J Biol Chem. 2004 Jan 23;279(4):2520-7. doi: 10.1074/jbc.M311584200. Epub 2003 Oct 31.
7
Acetyl-CoA carboxylase from Escherichia coli exhibits a pronounced hysteresis when inhibited by palmitoyl-acyl carrier protein.
Arch Biochem Biophys. 2017 Dec 15;636:100-109. doi: 10.1016/j.abb.2017.10.016. Epub 2017 Oct 31.
9
Andrimid producers encode an acetyl-CoA carboxyltransferase subunit resistant to the action of the antibiotic.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13321-6. doi: 10.1073/pnas.0806873105. Epub 2008 Sep 3.
10
A bisubstrate analog inhibitor of the carboxyltransferase component of acetyl-CoA carboxylase.
Biochem Biophys Res Commun. 2002 Mar 15;291(5):1213-7. doi: 10.1006/bbrc.2002.6576.

引用本文的文献

1
Phospholipid synthesis inside phospholipid membrane vesicles.
Commun Biol. 2022 Sep 27;5(1):1016. doi: 10.1038/s42003-022-03999-1.
2
The Classical, Yet Controversial, First Enzyme of Lipid Synthesis: Escherichia coli Acetyl-CoA Carboxylase.
Microbiol Mol Biol Rev. 2021 Aug 18;85(3):e0003221. doi: 10.1128/MMBR.00032-21. Epub 2021 Jun 16.

本文引用的文献

2
Binding and translocation of termination factor rho studied at the single-molecule level.
J Mol Biol. 2012 Nov 9;423(5):664-76. doi: 10.1016/j.jmb.2012.07.027. Epub 2012 Aug 9.
3
In vitro experimental system for analysis of transcription-translation coupling.
Nucleic Acids Res. 2012 Mar;40(6):e45. doi: 10.1093/nar/gkr1262. Epub 2011 Dec 30.
4
Bacterial transcription terminators: the RNA 3'-end chronicles.
J Mol Biol. 2011 Oct 7;412(5):793-813. doi: 10.1016/j.jmb.2011.03.036. Epub 2011 Mar 23.
5
Molecular biology. Syntheses that stay together.
Science. 2010 Apr 23;328(5977):436-7. doi: 10.1126/science.1189971.
6
A tale of two functions: enzymatic activity and translational repression by carboxyltransferase.
Nucleic Acids Res. 2010 Mar;38(4):1217-27. doi: 10.1093/nar/gkp1079. Epub 2009 Dec 3.
8
The discovery of polyribosomes.
Bioessays. 2008 Nov;30(11-12):1220-34. doi: 10.1002/bies.20846.
9
Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization.
J Mol Biol. 2008 Sep 26;382(1):236-45. doi: 10.1016/j.jmb.2008.06.068. Epub 2008 Jul 1.
10
Protein abundance profiling of the Escherichia coli cytosol.
BMC Genomics. 2008 Feb 27;9:102. doi: 10.1186/1471-2164-9-102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验