Heidarsson Pétur O, Naqvi Mohsin M, Otazo Mariela R, Mossa Alessandro, Kragelund Birthe B, Cecconi Ciro
Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
Institute of Nanoscience S3, Consiglio Nazionale delle Ricerche, 41125 Modena, Italy; Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy;
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13069-74. doi: 10.1073/pnas.1401065111. Epub 2014 Aug 25.
Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.
神经退行性疾病与蛋白质错误折叠密切相关,而详细了解控制错误折叠状态形成的潜在结构重排和途径对于解释这些疾病至关重要。在这里,我们使用单分子光镊来监测人类神经元钙传感器-1的错误折叠反应,该蛋白是一种多特异性EF手蛋白,参与神经递质释放并与严重神经系统疾病相关。我们直接观察到两条错误折叠轨迹,导致形成不同的动力学捕获错误折叠构象。两条轨迹均源自一条途径上的中间状态,并以钙依赖的方式与天然折叠竞争。通过调节施加力的弛豫速率,可以影响不同轨迹的相对概率,这表明对蛋白质的自由能景观进行了前所未有的实时控制。恒力实验与隐马尔可夫分析相结合,揭示了生理和病理钙浓度下错误折叠转变的自由能景观。对于一种钙传感器而言,值得注意的是,我们发现较高的钙浓度会增加错误折叠构象的寿命,减缓向天然状态的有效折叠。我们提出了一种崎岖的、多维的神经元钙传感器-1能量景观,并推测蛋白质错误折叠与钙调节异常之间的直接联系可能在神经退行性变中起作用。