Suppr超能文献

N-Ras和H-Ras不同的棕榈酰化状态决定了它们在高尔基体不同亚区室的定位。

The differential palmitoylation states of N-Ras and H-Ras determine their distinct Golgi subcompartment localizations.

作者信息

Lynch Stephen J, Snitkin Harriet, Gumper Iwona, Philips Mark R, Sabatini David, Pellicer Angel

机构信息

Department of Pathology, New York University School of Medicine, New York, New York.

出版信息

J Cell Physiol. 2015 Mar;230(3):610-9. doi: 10.1002/jcp.24779.

Abstract

Despite a high degree of structural homology and shared exchange factors, effectors and GTPase activating proteins, a large body of evidence suggests functional heterogeneity among Ras isoforms. One aspect of Ras biology that may explain this heterogeneity is the differential subcellular localizations driven by the C-terminal hypervariable regions of Ras proteins. Spatial heterogeneity has been documented at the level of organelles: palmitoylated Ras isoforms (H-Ras and N-Ras) localize on the Golgi apparatus whereas K-Ras4B does not. We tested the hypothesis that spatial heterogeneity also exists at the sub-organelle level by studying the localization of differentially palmitoylated Ras isoforms within the Golgi apparatus. Using confocal, live-cell fluorescent imaging and immunogold electron microscopy we found that, whereas the doubly palmitoylated H-Ras is distributed throughout the Golgi stacks, the singly palmitoylated N-Ras is polarized with a relative paucity of expression on the trans Golgi. Using palmitoylation mutants, we show that the different sub-Golgi distributions of the Ras proteins are a consequence of their differential degree of palmitoylation. Thus, the acylation state of Ras proteins controls not only their distribution between the Golgi apparatus and the plasma membrane, but also their distribution within the Golgi stacks.

摘要

尽管Ras亚型在结构上具有高度同源性,且共享交换因子、效应器和GTP酶激活蛋白,但大量证据表明Ras亚型之间存在功能异质性。Ras生物学的一个方面可能解释这种异质性,即由Ras蛋白的C端高变区驱动的亚细胞定位差异。细胞器水平的空间异质性已有文献记载:棕榈酰化的Ras亚型(H-Ras和N-Ras)定位于高尔基体,而K-Ras4B则不然。我们通过研究不同棕榈酰化状态的Ras亚型在高尔基体内的定位,验证了亚细胞器水平也存在空间异质性这一假设。利用共聚焦、活细胞荧光成像和免疫金电子显微镜技术,我们发现,双棕榈酰化的H-Ras分布于整个高尔基体堆栈,而单棕榈酰化的N-Ras则呈极化分布,在反式高尔基体上的表达相对较少。通过棕榈酰化突变体,我们表明Ras蛋白在高尔基体不同区域的分布差异是其棕榈酰化程度不同的结果。因此,Ras蛋白的酰化状态不仅控制其在高尔基体和质膜之间的分布,还控制其在高尔基体堆栈内的分布。

相似文献

3
Rasosomes originate from the Golgi to dispense Ras signals.
Cell Death Dis. 2013 Feb 14;4(2):e496. doi: 10.1038/cddis.2013.16.
4
Palmitoylated Ras proteins traffic through recycling endosomes to the plasma membrane during exocytosis.
J Cell Biol. 2010 Oct 4;191(1):23-9. doi: 10.1083/jcb.200911143. Epub 2010 Sep 27.
6
Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain.
J Cell Sci. 2008 Feb 15;121(Pt 4):421-7. doi: 10.1242/jcs.020107. Epub 2008 Jan 22.
8
A New View of Ras Isoforms in Cancers.
Cancer Res. 2016 Jan 1;76(1):18-23. doi: 10.1158/0008-5472.CAN-15-1536. Epub 2015 Dec 10.
9
Regulation of Ras localization by acylation enables a mode of intracellular signal propagation.
Sci Signal. 2010 Sep 21;3(140):ra68. doi: 10.1126/scisignal.20001370.

引用本文的文献

1
Attenuating ABHD17 Isoforms Augments the S-acylation and Function of NOD2 and a Subset of Crohn's Disease-associated NOD2 Variants.
Cell Mol Gastroenterol Hepatol. 2025;19(6):101491. doi: 10.1016/j.jcmgh.2025.101491. Epub 2025 Mar 5.
2
design of Ras isoform selective binders.
bioRxiv. 2025 Feb 5:2024.08.29.610300. doi: 10.1101/2024.08.29.610300.
3
Enhancing Gpx1 palmitoylation to inhibit angiogenesis by targeting PPT1.
Redox Biol. 2024 Nov;77:103376. doi: 10.1016/j.redox.2024.103376. Epub 2024 Oct 5.
4
Single-cell sensor analyses reveal signaling programs enabling Ras-G12C drug resistance.
Nat Chem Biol. 2025 Jan;21(1):47-58. doi: 10.1038/s41589-024-01684-4. Epub 2024 Aug 5.
5
Targeted genetic and small molecule disruption of N-Ras CaaX cleavage alters its localization and oncogenic potential.
Bioorg Chem. 2024 Jun;147:107316. doi: 10.1016/j.bioorg.2024.107316. Epub 2024 Mar 27.
6
8
Single-cell signaling analysis reveals that Major Vault Protein facilitates RasG12C inhibitor resistance.
bioRxiv. 2023 Oct 4:2023.10.02.560617. doi: 10.1101/2023.10.02.560617.
9
Refining S-acylation: Structure, regulation, dynamics, and therapeutic implications.
J Cell Biol. 2023 Nov 6;222(11). doi: 10.1083/jcb.202307103. Epub 2023 Sep 27.
10
CD40 induces selective routing of Ras isoforms to subcellular compartments.
J Cell Commun Signal. 2023 Sep;17(3):1009-1021. doi: 10.1007/s12079-023-00747-w. Epub 2023 May 1.

本文引用的文献

1
In TCR-stimulated T-cells, N-ras regulates specific genes and signal transduction pathways.
PLoS One. 2013 Jun 3;8(6):e63193. doi: 10.1371/journal.pone.0063193. Print 2014.
2
COPII and the regulation of protein sorting in mammals.
Nat Cell Biol. 2011 Dec 22;14(1):20-8. doi: 10.1038/ncb2390.
3
Regulating the regulator: post-translational modification of RAS.
Nat Rev Mol Cell Biol. 2011 Dec 22;13(1):39-51. doi: 10.1038/nrm3255.
5
Models for Golgi traffic: a critical assessment.
Cold Spring Harb Perspect Biol. 2011 Nov 1;3(11):a005215. doi: 10.1101/cshperspect.a005215.
6
Functional specificity of ras isoforms: so similar but so different.
Genes Cancer. 2011 Mar;2(3):216-31. doi: 10.1177/1947601911408081.
7
FKBP12 binds to acylated H-ras and promotes depalmitoylation.
Mol Cell. 2011 Jan 21;41(2):173-85. doi: 10.1016/j.molcel.2011.01.001.
8
Palmitoylated Ras proteins traffic through recycling endosomes to the plasma membrane during exocytosis.
J Cell Biol. 2010 Oct 4;191(1):23-9. doi: 10.1083/jcb.200911143. Epub 2010 Sep 27.
9
Regulation of Ras localization by acylation enables a mode of intracellular signal propagation.
Sci Signal. 2010 Sep 21;3(140):ra68. doi: 10.1126/scisignal.20001370.
10
Small-molecule inhibition of APT1 affects Ras localization and signaling.
Nat Chem Biol. 2010 Jun;6(6):449-56. doi: 10.1038/nchembio.362. Epub 2010 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验