Suppr超能文献

大肠杆菌D-苹果酸脱氢酶,一种参与亮氨酸生物合成途径的通用酶。

Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway.

作者信息

Vorobieva Anastassia A, Khan Mohammad Shahneawz, Soumillion Patrice

机构信息

From the Laboratoire de Biochimie, Biophysique et Génétique des Microorganismes (BBGM), Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium and.

the Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh.

出版信息

J Biol Chem. 2014 Oct 17;289(42):29086-96. doi: 10.1074/jbc.M114.595363. Epub 2014 Aug 26.

Abstract

The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of D-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on D-malate as a carbon source, the D-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB(-) strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (L(+)-tartrate, D-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.

摘要

β-脱羧脱氢酶超家族的酶催化具有各种特异性的基于D-苹果酸的底物的氧化脱羧反应。在这里,我们表明,除了其使细菌以D-苹果酸作为碳源生长的天然功能外,从其染色体基因天然表达的大肠杆菌D-苹果酸脱氢酶(EcDmlA)能够在缺乏同源异丙基苹果酸脱氢酶的leuB(-)菌株中补充亮氨酸营养缺陷。据我们所知,这是一种酶从其染色体位点表达时,以生理相关的活性水平对核心代谢的两个不同途径起作用的第一个例子。EcDmlA对至少三种不同的底物(L(+)-酒石酸、D-苹果酸和3-异丙基苹果酸)具有相对较高的催化活性。由于其在体内和体外的这些特性,EcDmlA可被定义为一种多能酶。系统发育分析突出了DmlA的古老起源,表明该酶在整个进化过程中一直保持其多能特性。我们讨论了这些发现对蛋白质进化的意义。

相似文献

1
Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway.
J Biol Chem. 2014 Oct 17;289(42):29086-96. doi: 10.1074/jbc.M114.595363. Epub 2014 Aug 26.
3
Regulation of aerobic and anaerobic D-malate metabolism of Escherichia coli by the LysR-type regulator DmlR (YeaT).
J Bacteriol. 2010 May;192(10):2503-11. doi: 10.1128/JB.01665-09. Epub 2010 Mar 16.
5
Stringency of substrate specificity of Escherichia coli malate dehydrogenase.
Arch Biochem Biophys. 1995 Sep 10;322(1):43-52. doi: 10.1006/abbi.1995.1434.
7
A redox-active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis.
Plant J. 2009 Nov;60(4):679-90. doi: 10.1111/j.1365-313X.2009.03990.x. Epub 2009 Aug 6.
10
Escherichia coli malate dehydrogenase, a novel solubility enhancer for heterologous proteins synthesized in Escherichia coli.
Biotechnol Lett. 2007 Oct;29(10):1513-8. doi: 10.1007/s10529-007-9417-3. Epub 2007 Jun 5.

引用本文的文献

1
Discovery, Herbicidal Activity and Biosynthesis of a Novel Natural Tetramic Acid from Alternaria Species.
Adv Sci (Weinh). 2025 Jun;12(21):e2416188. doi: 10.1002/advs.202416188. Epub 2025 Apr 25.
2
Biochemical and structural elucidation of the L-carnitine degradation pathway of the human pathogen .
Front Microbiol. 2024 Aug 14;15:1446595. doi: 10.3389/fmicb.2024.1446595. eCollection 2024.
3
Substrate Promiscuity of Malic Enzyme for CO Fixation Reaction.
JACS Au. 2024 May 14;4(5):1758-1762. doi: 10.1021/jacsau.4c00290. eCollection 2024 May 27.
6
Uncovering a superfamily of nickel-dependent hydroxyacid racemases and epimerases.
Sci Rep. 2020 Oct 22;10(1):18123. doi: 10.1038/s41598-020-74802-6.
7
How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation.
FEBS J. 2020 Apr;287(7):1323-1342. doi: 10.1111/febs.15185. Epub 2020 Jan 10.
8
d-2-Hydroxyglutarate dehydrogenase plays a dual role in l-serine biosynthesis and d-malate utilization in the bacterium .
J Biol Chem. 2018 Oct 5;293(40):15513-15523. doi: 10.1074/jbc.RA118.003897. Epub 2018 Aug 21.
9
Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7293-E7302. doi: 10.1073/pnas.1607817115. Epub 2018 Jul 16.
10
Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius.
Extremophiles. 2016 Nov;20(6):843-853. doi: 10.1007/s00792-016-0872-4. Epub 2016 Sep 2.

本文引用的文献

1
Dynamics and constraints of enzyme evolution.
J Exp Zool B Mol Dev Evol. 2014 Nov;322(7):468-87. doi: 10.1002/jez.b.22562. Epub 2014 Feb 13.
2
Substrate ambiguous enzymes within the Escherichia coli proteome offer different evolutionary solutions to the same problem.
Mol Biol Evol. 2013 Sep;30(9):2001-12. doi: 10.1093/molbev/mst105. Epub 2013 May 31.
4
Network context and selection in the evolution to enzyme specificity.
Science. 2012 Aug 31;337(6098):1101-4. doi: 10.1126/science.1216861.
5
Induced fit and the catalytic mechanism of isocitrate dehydrogenase.
Biochemistry. 2012 Sep 11;51(36):7098-115. doi: 10.1021/bi300483w. Epub 2012 Aug 27.
6
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2966-71. doi: 10.1073/pnas.1019605109. Epub 2012 Feb 6.
7
Toward a systems biology perspective on enzyme evolution.
J Biol Chem. 2012 Jan 2;287(1):3-10. doi: 10.1074/jbc.R111.254714. Epub 2011 Nov 8.
8
The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters.
Biochemistry. 2011 May 31;50(21):4402-10. doi: 10.1021/bi2002289. Epub 2011 May 4.
10
ProtTest 3: fast selection of best-fit models of protein evolution.
Bioinformatics. 2011 Apr 15;27(8):1164-5. doi: 10.1093/bioinformatics/btr088. Epub 2011 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验