From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
the Institute of Medical Sciences, Second Hospital of Shandong University, Jinan 250033, China, and.
J Biol Chem. 2018 Oct 5;293(40):15513-15523. doi: 10.1074/jbc.RA118.003897. Epub 2018 Aug 21.
is a very large bacterial genus in which several species can use d-malate for growth. However, the enzymes that can metabolize d-malate, such as d-malate dehydrogenase, appear to be absent in most species. d-3-Phosphoglycerate dehydrogenase (SerA) can catalyze the production of d-2-hydroxyglutarate (d-2-HG) from 2-ketoglutarate to support d-3-phosphoglycerate dehydrogenation, which is the initial reaction in bacterial l-serine biosynthesis. In this study, we show that SerA of the strain A1501 reduces oxaloacetate to d-malate and that d-2-HG dehydrogenase (D2HGDH) from displays d-malate-oxidizing activity. Of note, D2HGDH participates in converting a trace amount of d-malate to oxaloacetate during bacterial l-serine biosynthesis. Moreover, D2HGDH is crucial for the utilization of d-malate as the sole carbon source for growth of A1501. We also found that the D2HGDH expression is induced by the exogenously added d-2-HG or d-malate and that a flavoprotein functions as a soluble electron carrier between D2HGDH and electron transport chains to support d-malate utilization by These results support the idea that D2HGDH evolves as an enzyme for both d-malate and d-2-HG dehydrogenation in In summary, D2HGDH from A1501 participates in both a core metabolic pathway for l-serine biosynthesis and utilization of extracellular d-malate.
是一个非常大的细菌属,其中有几个物种可以利用 d-苹果酸进行生长。然而,能够代谢 d-苹果酸的酶,如 d-苹果酸脱氢酶,似乎在大多数 物种中都不存在。d-3-磷酸甘油酸脱氢酶(SerA)可以催化 2-酮戊二酸生成 d-2-羟基戊二酸(d-2-HG),以支持 d-3-磷酸甘油酸脱氢,这是细菌 l-丝氨酸生物合成的初始反应。在本研究中,我们表明 菌株 A1501 的 SerA 将草酰乙酸还原为 d-苹果酸,并且来自 的 d-2-HG 脱氢酶(D2HGDH)具有 d-苹果酸氧化活性。值得注意的是,D2HGDH 在细菌 l-丝氨酸生物合成过程中参与将微量的 d-苹果酸转化为草酰乙酸。此外,D2HGDH 对于利用 d-苹果酸作为 A1501 生长的唯一碳源至关重要。我们还发现,D2HGDH 的表达受外源添加的 d-2-HG 或 d-苹果酸诱导,并且黄素蛋白作为 D2HGDH 和电子传递链之间的可溶性电子载体,以支持 d-苹果酸的利用 通过 这些结果支持了 D2HGDH 在 中作为 d-苹果酸和 d-2-HG 脱氢酶进化的观点。总之,来自 A1501 的 D2HGDH 参与了 l-丝氨酸生物合成的核心代谢途径和细胞外 d-苹果酸的利用。