Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
FEBS Open Bio. 2014 Jul 9;4:651-8. doi: 10.1016/j.fob.2014.07.003. eCollection 2014.
4-Oxalocrotonate tautomerase (4-OT) catalyzes the enol-keto tautomerization of 2-hydroxymuconate, utilizing its N-terminal proline (Pro-1) as general base catalyst. Substituting Pro-1 with bulky or charged residues will result in poor or no post-translational removal of the translation-initiating methionine by the methionine aminopeptidase (MetAP) of the Escherichia coli expression host. Here, we set out to investigate whether co-expression with previously engineered aminopeptidase MetAP-∗TG can be used to produce the P1S, P1H and P1Q variants of 4-OT in a demethionylated form. The P1S variant, which carries a small residue at the penultimate position (the first position after the initiating methionine), was found to be fully processed by wild-type MetAP. The P1S variant has low-level 2-hydroxymuconate tautomerase and promiscuous oxaloacetate decarboxylase activity. The P1Q and P1H variants of 4-OT, which carry bulky residues at the penultimate position, could only be obtained in a demethionylated form (a minor fraction of the purified protein is still composed of methionylated enzyme) by co-expression with MetAP-∗TG. Interestingly, the Gln-1 residue of the demethionylated P1Q variant undergoes intramolecular cyclization to form pyroglutamate (pE), yielding variant P1pE. Whereas the P1H/M1P2H mixture has low-level tautomerase activity, the P1pE/M1P2Q mixture has robust tautomerase activity. The substitution of Pro-1 by Gln, followed by removal of the initiating Met and cyclization of Gln-1 to form pE, is a unique way to obtain a structural analogue of proline on the N-terminus of 4-OT. This opens up new possibilities to study the importance of Pro-1 in recently discovered C-C bond-forming activities of this highly promiscuous tautomerase.
4-氧代戊烯二酸脱水酶(4-OT)催化 2-羟戊烯酸的烯醇-酮互变异构化,利用其 N 端脯氨酸(Pro-1)作为通用碱催化剂。用大体积或带电荷的残基取代 Pro-1,会导致大肠杆菌表达宿主的蛋氨酸氨肽酶(MetAP)无法有效切除翻译起始甲硫氨酸。在此,我们研究了与先前工程化的氨肽酶 MetAP-∗TG 共表达是否可用于生产 P1S、P1H 和 P1Q 变体的脱甲硫氨酸形式的 4-OT。P1S 变体在倒数第二位(起始甲硫氨酸后的第一个位置)携带小残基,被发现可被野生型 MetAP 完全加工。P1S 变体具有低水平的 2-羟戊烯酸互变异构酶和混杂的草酰乙酸脱羧酶活性。P1Q 和 P1H 变体在倒数第二位携带大体积残基,只能通过与 MetAP-∗TG 共表达获得脱甲硫氨酸形式(纯化蛋白的一小部分仍然由甲硫氨酸化酶组成)。有趣的是,脱甲硫氨酸的 P1Q 变体的 Gln-1 残基经历分子内环化形成焦谷氨酸(pE),产生变体 P1pE。虽然 P1H/M1P2H 混合物具有低水平的互变异构酶活性,但 P1pE/M1P2Q 混合物具有强大的互变异构酶活性。Pro-1 被 Gln 取代,然后去除起始 Met 并使 Gln-1 环化形成 pE,这是在 4-OT 的 N 端获得脯氨酸结构类似物的独特方法。这为研究 Pro-1 在这种高度混杂的互变异构酶最近发现的 C-C 键形成活性中的重要性开辟了新的可能性。