Department of Chemical and Biomolecular Engineering and ‡Bioengineering Program, Lehigh University , Bethlehem, Pennsylvania 18015, United States.
J Am Chem Soc. 2014 Sep 17;136(37):12947-57. doi: 10.1021/ja5055498. Epub 2014 Sep 8.
We used single molecule force spectroscopy to measure the force required to remove single-stranded DNA (ssDNA) homopolymers from single-walled carbon nanotubes (SWCNTs) deposited on methyl-terminated self-assembled monolayers (SAMs). The peeling forces obtained from these experiments are bimodal in distribution. The cluster of low forces corresponds to peeling from the SAM surface, while the cluster of high forces corresponds to peeling from the SWCNTs. Using a simple equilibrium model of the single molecule peeling process, we calculated the free energy of binding per nucleotide. We found that the free energy of ssDNA binding to hydrophobic SAMs decreases as poly(A) > poly(G) ≈ poly(T) > poly(C) (16.9 ± 0.1; 9.7 ± 0.1; 9.5 ± 0.1; 8.7 ± 0.1 kBT, per nucleotide). The free energy of ssDNA binding to SWCNT adsorbed on this SAM also decreases in the same order poly(A) > poly(G) > poly(T) > poly(C), but its magnitude is significantly greater than that of DNA-SAM binding energy (38.1 ± 0.2; 33.9 ± 0.1; 23.3 ± 0.1; 17.1 ± 0.1 kBT, per nucleotide). An unexpected finding is that binding strength of ssDNA to the curved SWCNTs is much greater than to flat graphite, which also has a different ranking (poly(T) > poly(A) > poly(G) ≥ poly(C); 11.3 ± 0.8, 9.9 ± 0.5, 8.3 ± 0.2, and 7.5 ± 0.8 kBT, respectively, per nucleotide). Replica-exchange molecular dynamics simulations show that ssDNA binds preferentially to the curved SWCNT surface, leading us to conclude that the differences in ssDNA binding between graphite and nanotubes arise from the spontaneous curvature of ssDNA.
我们使用单分子力谱技术测量了从沉积在甲基封端自组装单层(SAM)上的单壁碳纳米管(SWCNT)上移除单链 DNA(ssDNA)同聚物所需的力。从这些实验中获得的剥离力呈双峰分布。低力簇对应于从 SAM 表面的剥离,而高力簇对应于从 SWCNT 的剥离。使用单分子剥离过程的简单平衡模型,我们计算了每个核苷酸的结合自由能。我们发现,ssDNA 与疏水性 SAM 的结合自由能随着 poly(A) > poly(G) ≈ poly(T) > poly(C) 而降低(16.9 ± 0.1;9.7 ± 0.1;9.5 ± 0.1;8.7 ± 0.1 kBT,每个核苷酸)。吸附在这种 SAM 上的 SWCNT 上的 ssDNA 的结合自由能也以相同的顺序降低,poly(A) > poly(G) > poly(T) > poly(C),但其幅度明显大于 DNA-SAM 结合能(38.1 ± 0.2;33.9 ± 0.1;23.3 ± 0.1;17.1 ± 0.1 kBT,每个核苷酸)。一个意外的发现是,ssDNA 与弯曲的 SWCNT 的结合强度远大于与平坦石墨的结合强度,而且其排序也不同(poly(T) > poly(A) > poly(G) ≥ poly(C);11.3 ± 0.8、9.9 ± 0.5、8.3 ± 0.2 和 7.5 ± 0.8 kBT,每个核苷酸)。复制交换分子动力学模拟表明,ssDNA 优先结合到弯曲的 SWCNT 表面,这使我们得出结论,ssDNA 与石墨和纳米管之间的结合差异源于 ssDNA 的自发曲率。