Suppr超能文献

低温化学气相沉积法合成图案化核壳结构VO2@ZnO纳米四足体及其增强的温度依赖场发射性能。

Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties.

作者信息

Yin Haihong, Yu Ke, Song Changqing, Wang Zhiliang, Zhu Ziqiang

机构信息

Key Laboratory of Polar Materials and Devices (Ministry of Education of China), Department of Electronic Engineering, East China Normal University, Shanghai, 200241, P. R. China.

出版信息

Nanoscale. 2014 Oct 21;6(20):11820-7. doi: 10.1039/c4nr02661f. Epub 2014 Aug 28.

Abstract

VO2 nanostructures are attractive materials because of their reversible metal-insulator transition (MIT) and wide applications in devices. When they are used as field emitters, a new type of temperature-controlled field emission device can be fabricated. Vapor transport methods used to synthesize traditional VO2 nanostructures are energy-intensive, low yield, and produce simple morphology (quasi-1D) that exhibits substrate clamping; thus they are not suitable for field emission applications. To overcome these limitations, ZnO nanotetrapods were used as templates, and patterned core-shell VO2@ZnO nanotetrapods were successfully grown on an ITO/glass substrate via a low-temperature CVD synthesis. SEM, TEM, EDX, XPS analyses and X-ray diffraction revealed that the cores and shells of these nanotetrapods were single crystal wurtzite-type ZnO and polycrystalline VO2, respectively. The VO2@ZnO nanotetrapods show strongly MIT-related FE properties, the emission current density at low temperature is significantly enhanced in comparison with pure VO2 nanostructures, and the emission current density increased by about 20 times as the ambient temperature increased from 25 to 105 °C at a fixed field of 5 V μm(-1). Although the VO2@ZnO nanotetrapods show a worse FE performance at low temperatures compared with pure ZnO nanotetrapods, the FE performance was substantially improved at high temperatures, which was attributed to the MIT-related band bending near the interface and the abrupt resistance change across the MIT.

摘要

VO₂纳米结构因其可逆的金属-绝缘体转变(MIT)以及在器件中的广泛应用而成为有吸引力的材料。当它们用作场发射体时,可以制造出一种新型的温度控制场发射器件。用于合成传统VO₂纳米结构的气相传输方法能耗高、产率低,且产生的形态简单(准一维),表现出衬底夹持现象;因此它们不适用于场发射应用。为了克服这些限制,采用ZnO纳米四足体作为模板,通过低温化学气相沉积合成法在ITO/玻璃衬底上成功生长出图案化的核壳结构VO₂@ZnO纳米四足体。扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量色散X射线光谱(EDX)、X射线光电子能谱(XPS)分析以及X射线衍射表明,这些纳米四足体的核和壳分别是单晶纤锌矿型ZnO和多晶VO₂。VO₂@ZnO纳米四足体表现出与MIT密切相关的场发射特性,与纯VO₂纳米结构相比,低温下的发射电流密度显著增强,并且在5 V μm⁻¹的固定电场下,随着环境温度从25℃升高到105℃,发射电流密度增加了约20倍。尽管与纯ZnO纳米四足体相比,VO₂@ZnO纳米四足体在低温下的场发射性能较差,但在高温下其场发射性能得到了显著改善,这归因于界面附近与MIT相关的能带弯曲以及MIT过程中电阻的突然变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验