Center for Population Health, Burnet Institute, Melbourne, Victoria, Australia; Infectious Diseases Unit, The Alfred Hospital, Melbourne, Victoria, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Center for Research Excellence in Injecting Drug Use, Burnet Institute, Melbourne, Victoria, Australia.
Hepatology. 2014 Dec;60(6):1861-70. doi: 10.1002/hep.27403. Epub 2014 Oct 24.
UNLABELLED: With the development of new highly efficacious direct-acting antiviral (DAA) treatments for hepatitis C virus (HCV), the concept of treatment as prevention is gaining credence. To date, the majority of mathematical models assume perfect mixing, with injectors having equal contact with all other injectors. This article explores how using a networks-based approach to treat people who inject drugs (PWID) with DAAs affects HCV prevalence. Using observational data, we parameterized an exponential random graph model containing 524 nodes. We simulated transmission of HCV through this network using a discrete time, stochastic transmission model. The effect of five treatment strategies on the prevalence of HCV was investigated; two of these strategies were (1) treat randomly selected nodes and (2) "treat your friends," where an individual is chosen at random for treatment and all their infected neighbors are treated. As treatment coverage increases, HCV prevalence at 10 years reduces for both the high- and low-efficacy treatment. Within each set of parameters, the treat your friends strategy performed better than the random strategy being most marked for higher-efficacy treatment. For example, over 10 years of treating 25 per 1,000 PWID, the prevalence drops from 50% to 40% for the random strategy and to 33% for the treat your friends strategy (6.5% difference; 95% confidence interval: 5.1-8.1). CONCLUSION: Treat your friends is a feasible means of utilizing network strategies to improve treatment efficiency. In an era of highly efficacious and highly tolerable treatment, such an approach will benefit not just the individual, but also the community more broadly by reducing the prevalence of HCV among PWID.
未加标签:随着新型高效直接作用抗病毒(DAA)治疗丙型肝炎病毒(HCV)的发展,治疗即预防的概念越来越受到认可。迄今为止,大多数数学模型都假设完全混合,注射者与所有其他注射者平等接触。本文探讨了使用基于网络的方法对注射毒品者(PWID)使用 DAA 进行治疗如何影响 HCV 流行率。使用观察数据,我们对包含 524 个节点的指数随机图模型进行参数化。我们使用离散时间随机传播模型通过该网络模拟 HCV 的传播。研究了五种治疗策略对 HCV 流行率的影响;其中两种策略是(1)随机选择节点进行治疗和(2)“治疗你的朋友”,其中随机选择一个人进行治疗,所有受感染的邻居都接受治疗。随着治疗覆盖率的增加,高、低疗效治疗的 HCV 流行率在 10 年内都有所降低。在每组参数内,“治疗你的朋友”策略比随机策略表现更好,对于更高疗效的治疗更为明显。例如,在 10 年时间内治疗 1000 名 PWID 中的 25 人,随机策略的流行率从 50%降至 40%,而“治疗你的朋友”策略的流行率降至 33%(差异 6.5%;95%置信区间:5.1-8.1)。
结论:“治疗你的朋友”是利用网络策略提高治疗效率的可行方法。在高效和高耐受性治疗的时代,这种方法不仅对个人有益,而且通过降低 PWID 中的 HCV 流行率,对更广泛的社区也有益。
Int J Drug Policy. 2015-5-21
Acta Gastroenterol Belg. 2016
Clin Liver Dis (Hoboken). 2024-6-12
Stat Commun Infect Dis. 2021-10-11