文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习和社交网络分析揭示了注射吸毒高发人群中艾滋病毒传播的驱动因素。

Deep learning and social network analysis elucidate drivers of HIV transmission in a high-incidence cohort of people who inject drugs.

作者信息

Clipman Steven J, Mehta Shruti H, Mohapatra Shobha, Srikrishnan Aylur K, Zook Katie J C, Duggal Priya, Saravanan Shanmugam, Nandagopal Paneerselvam, Kumar Muniratnam Suresh, Lucas Gregory M, Latkin Carl A, Solomon Sunil S

机构信息

Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

出版信息

Sci Adv. 2022 Oct 21;8(42):eabf0158. doi: 10.1126/sciadv.abf0158. Epub 2022 Oct 19.


DOI:10.1126/sciadv.abf0158
PMID:36260674
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9581475/
Abstract

Globally, people who inject drugs (PWID) experience some of the fastest-growing HIV epidemics. Network-based approaches represent a powerful tool for understanding and combating these epidemics; however, detailed social network studies are limited and pose analytical challenges. We collected longitudinal social (injection partners) and spatial (injection venues) network information from 2512 PWID in New Delhi, India. We leveraged network analysis and graph neural networks (GNNs) to uncover factors associated with HIV transmission and identify optimal intervention delivery points. Longitudinal HIV incidence was 21.3 per 100 person-years. Overlapping community detection using GNNs revealed seven communities, with HIV incidence concentrated within one community. The injection venue most strongly associated with incidence was found to overlap six of the seven communities, suggesting that an intervention deployed at this one location could reach the majority of the sample. These findings highlight the utility of network analysis and deep learning in HIV program design.

摘要

在全球范围内,注射毒品者(PWID)经历着一些增长最快的艾滋病毒疫情。基于网络的方法是理解和应对这些疫情的有力工具;然而,详细的社会网络研究有限且带来分析挑战。我们从印度新德里的2512名注射毒品者那里收集了纵向社会(注射伙伴)和空间(注射场所)网络信息。我们利用网络分析和图神经网络(GNN)来揭示与艾滋病毒传播相关的因素,并确定最佳干预交付点。纵向艾滋病毒发病率为每100人年21.3例。使用GNN进行的重叠社区检测揭示了七个社区,艾滋病毒发病率集中在一个社区内。发现与发病率最密切相关的注射场所与七个社区中的六个重叠,这表明在这一地点开展的干预措施可以覆盖大部分样本。这些发现凸显了网络分析和深度学习在艾滋病毒项目设计中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbd/9581475/a83dab51d63f/sciadv.abf0158-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbd/9581475/8717eccf3b10/sciadv.abf0158-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbd/9581475/a05608db89df/sciadv.abf0158-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbd/9581475/b8ca172850ee/sciadv.abf0158-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbd/9581475/a83dab51d63f/sciadv.abf0158-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbd/9581475/8717eccf3b10/sciadv.abf0158-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbd/9581475/a05608db89df/sciadv.abf0158-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbd/9581475/b8ca172850ee/sciadv.abf0158-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbd/9581475/a83dab51d63f/sciadv.abf0158-f4.jpg

相似文献

[1]
Deep learning and social network analysis elucidate drivers of HIV transmission in a high-incidence cohort of people who inject drugs.

Sci Adv. 2022-10-21

[2]
Role of direct and indirect social and spatial ties in the diffusion of HIV and HCV among people who inject drugs: a cross-sectional community-based network analysis in New Delhi, India.

Elife. 2021-8-3

[3]
Network centrality and HIV prevention service use among people who inject drugs: Findings from a sociometric network cohort in New Delhi, India.

Addiction. 2024-3

[4]
Respondent-driven sampling for identification of HIV- and HCV-infected people who inject drugs and men who have sex with men in India: A cross-sectional, community-based analysis.

PLoS Med. 2017-11-28

[5]
A scalable, integrated intervention to engage people who inject drugs in HIV care and medication-assisted treatment (HPTN 074): a randomised, controlled phase 3 feasibility and efficacy study.

Lancet. 2018-9-1

[6]
Integration of a geospatially targeted community-based testing approach with respondent-driven sampling to identify people who inject drugs living with HIV and HCV in Patti and Gorakhpur, India.

Drug Alcohol Depend. 2023-6-1

[7]
HIV incidence among people who inject drugs in the Middle East and North Africa: mathematical modelling analysis.

J Int AIDS Soc. 2018-3

[8]
Regional differences between people who inject drugs in an HIV prevention trial integrating treatment and prevention (HPTN 074): a baseline analysis.

J Int AIDS Soc. 2018-10

[9]
Social-spatial network structures among young urban and suburban persons who inject drugs in a large metropolitan area.

medRxiv. 2023-2-23

[10]
Estimating the contribution of stimulant injection to HIV and HCV epidemics among people who inject drugs and implications for harm reduction: A modeling analysis.

Drug Alcohol Depend. 2020-8-1

引用本文的文献

[1]
Network-based strategies to combat HCV: Examining social and spatial drivers of transmission among PWID in New Delhi.

J Viral Hepat. 2024-9

[2]
Injection network drivers of HIV prevention service utilization among people who inject drugs: results of a community-based sociometric network cohort in New Delhi, India.

J Int AIDS Soc. 2024-4

[3]
Network centrality and HIV prevention service use among people who inject drugs: Findings from a sociometric network cohort in New Delhi, India.

Addiction. 2024-3

[4]
Incidence of HIV and hepatitis C virus among people who inject drugs, and associations with age and sex or gender: a global systematic review and meta-analysis.

Lancet Gastroenterol Hepatol. 2023-6

[5]
FAD: Fine-Grained Adversarial Detection by Perturbation Intensity Classification.

Entropy (Basel). 2023-2-11

本文引用的文献

[1]
Causal Inference for Social Network Data.

J Am Stat Assoc. 2024

[2]
Validation of population-level HIV-1 incidence estimation by cross-sectional incidence assays in the HPTN 071 (PopART) trial.

J Int AIDS Soc. 2021-12

[3]
Auto-G-Computation of Causal Effects on a Network.

J Am Stat Assoc. 2021

[4]
Role of direct and indirect social and spatial ties in the diffusion of HIV and HCV among people who inject drugs: a cross-sectional community-based network analysis in New Delhi, India.

Elife. 2021-8-3

[5]
Long-term safety and efficacy of emtricitabine and tenofovir alafenamide vs emtricitabine and tenofovir disoproxil fumarate for HIV-1 pre-exposure prophylaxis: week 96 results from a randomised, double-blind, placebo-controlled, phase 3 trial.

Lancet HIV. 2021-7

[6]
XGraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties.

J Chem Inf Model. 2021-6-28

[7]
Optimizing respondent-driven sampling to find undiagnosed HIV-infected people who inject drugs.

AIDS. 2021-3-1

[8]
Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations.

IEEE J Biomed Health Inform. 2021-5

[9]
Application of deep learning methods in biological networks.

Brief Bioinform. 2021-3-22

[10]
A Comprehensive Survey on Graph Neural Networks.

IEEE Trans Neural Netw Learn Syst. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索