Maass Danielle, de Oliveira Débora, de Souza Antônio A Ulson, Souza Selene M A Guelli U
Chemical and Food Engineering Department, Federal University of Santa Catarina, PO Box 476, 88040-900, Florianópolis, SC, Brazil.
Appl Biochem Biotechnol. 2014 Nov;174(6):2079-85. doi: 10.1007/s12010-014-1189-3. Epub 2014 Aug 28.
The burning of fossil fuels has released a large quantity of pollutants into the atmosphere. In this context, sulfur dioxide is one of the most noxious gas which, on reacting with moist air, is transformed into sulfuric acid, causing the acid rain. In response, many countries have reformulated their legislation in order to enforce the commercialization of fuels with very low sulfur levels. The existing desulfurization processes cannot remove such low levels of sulfur and thus a biodesulfurization has been developed, where the degradation of sulfur occurs through the action of microorganisms. Rhodococcus erythropolis has been identified as one of the most promising bacteria for use in the biodesulfurization. In this study, the effectiveness of the strain R. erythropolis ATCC 4277 in the desulfurization of dibenzothiophene (DBT) was evaluated in a batch reactor using an organic phase (n-dodecane or diesel) concentrations of 20, 80, and 100 % (v/v). This strain was able to degrade 93.3, 98.0, and 95.5 % of the DBT in the presence of 20, 80, and 100 % (v/v) of dodecane, respectively. The highest value for the specific DBT degradation rate was 44 mmol DBT · kg DCW(-1) · h(-1), attained in the reactor containing 80 % (v/v) of n-dodecane as the organic phase.
化石燃料的燃烧向大气中释放了大量污染物。在这种背景下,二氧化硫是最有害的气体之一,它与潮湿空气反应会转化为硫酸,从而导致酸雨。作为应对措施,许多国家重新制定了法规,以强制推行低硫燃料的商业化。现有的脱硫工艺无法去除如此低水平的硫,因此开发了生物脱硫技术,其中硫的降解是通过微生物的作用实现的。红平红球菌已被确定为生物脱硫中最有前景的细菌之一。在本研究中,使用浓度为20%、80%和100%(v/v)的有机相(正十二烷或柴油),在间歇式反应器中评估了红平红球菌ATCC 4277菌株对二苯并噻吩(DBT)的脱硫效果。在存在20%(v/v)、80%(v/v)和100%(v/v)正十二烷的情况下,该菌株分别能够降解93.3%、98.0%和95.5%的DBT。以正十二烷为有机相、浓度为80%(v/v)的反应器中,DBT的比降解速率最高,达到44 mmol DBT·kg DCW⁻¹·h⁻¹。