Kong Wenqian, Guo Hui, Goff Valorie H, Lee Tae-Ho, Kim Changsoo, Paterson Andrew H
Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
Theor Appl Genet. 2014 Nov;127(11):2387-403. doi: 10.1007/s00122-014-2384-x. Epub 2014 Aug 28.
We identified quantitative trait loci influencing plant architecture that may be valuable in breeding of optimized genotypes for sustainable food and/or cellulosic biomass production, and advancing resilience to changing climates. We describe a 3-year study to identify quantitative trait loci (QTLs) for vegetative branching of sorghum in a recombinant inbred line population of 161 genotypes derived from two morphologically distinct parents, S. bicolor × S. propinquum. We quantify vegetative branching based on morphological position and physiological status. Different sets of QTLs for different levels of branching were identified. QTLs discovered on chromosomes 1, 3, 7 and 8 affect multiple vegetative branching variables, suggesting that these regions may contain genes that control general axillary meristem initiation. Other regions that only influence one vegetative branching trait could contain genes that influence developmental processes contributing to divergent patterns of plant architecture. We investigate the relationship between vegetative branching patterns and dry biomass, and conclude that tillers with mature panicles and immature secondary branches each show consistent positive correlation with dry biomass. Among 19 branching-related genes from rice, eight sorghum homologs of seven rice genes are in syntenic blocks within branching-related QTL likelihood intervals. Five of these eight genes are within 700 kb of SNPs significantly associated with differences in branching in genome-wide association study of a diversity panel of 377 sorghum accessions, and three contain striking allelic variations between S. bicolor and S. propinquum that are likely to impact gene functions. Unraveling genetic determinants for vegetative branching may contribute to deterministic breeding of optimized genotypes for sustainable food and cellulosic biomass production in both optimal and marginal conditions, which are resilient to future climates that are more volatile and more stressful.
我们鉴定出了影响株型的数量性状基因座,这些基因座对于培育用于可持续粮食和/或纤维素生物质生产的优化基因型,以及提高应对气候变化的恢复力可能具有重要价值。我们描述了一项为期3年的研究,旨在从两个形态不同的亲本双色高粱(S. bicolor)×拟高粱(S. propinquum)衍生出的161个基因型的重组自交系群体中,鉴定高粱营养分枝的数量性状基因座(QTL)。我们基于形态位置和生理状态对营养分枝进行了量化。针对不同分枝水平鉴定出了不同的QTL集。在1号、3号、7号和8号染色体上发现的QTL影响多个营养分枝变量,这表明这些区域可能包含控制一般腋生分生组织起始的基因。其他仅影响一个营养分枝性状的区域可能包含影响发育过程的基因,这些发育过程导致了不同的株型模式。我们研究了营养分枝模式与干生物量之间的关系,并得出结论:具有成熟穗和未成熟二级分枝的分蘖均与干生物量呈一致的正相关。在来自水稻的19个与分枝相关的基因中,7个水稻基因的8个高粱同源基因位于分枝相关QTL似然区间内的同线区段。这8个基因中的5个位于与377份高粱种质多样性面板全基因组关联研究中分枝差异显著相关的单核苷酸多态性(SNP)的700 kb范围内,其中3个在双色高粱和拟高粱之间含有明显的等位基因变异,这可能会影响基因功能。揭示营养分枝的遗传决定因素可能有助于在最佳和边缘条件下确定性地培育用于可持续粮食和纤维素生物质生产的优化基因型,这些基因型能够抵御未来更不稳定和更具压力的气候。