Computational Biologist with the United States Department of Agriculture - Agricultural Research Service, Ithaca, NY 14853, USA.
Bioinformatics. 2012 Sep 15;28(18):2397-9. doi: 10.1093/bioinformatics/bts444. Epub 2012 Jul 13.
Software programs that conduct genome-wide association studies and genomic prediction and selection need to use methodologies that maximize statistical power, provide high prediction accuracy and run in a computationally efficient manner. We developed an R package called Genome Association and Prediction Integrated Tool (GAPIT) that implements advanced statistical methods including the compressed mixed linear model (CMLM) and CMLM-based genomic prediction and selection. The GAPIT package can handle large datasets in excess of 10 000 individuals and 1 million single-nucleotide polymorphisms with minimal computational time, while providing user-friendly access and concise tables and graphs to interpret results.
http://www.maizegenetics.net/GAPIT.
Supplementary data are available at Bioinformatics online.
进行全基因组关联研究和基因组预测与选择的软件程序需要使用最大限度地提高统计能力、提供高预测准确性和以计算高效方式运行的方法。我们开发了一个名为基因组关联和预测综合工具(GAPIT)的 R 包,该工具实现了先进的统计方法,包括压缩混合线性模型(CMLM)和基于 CMLM 的基因组预测和选择。GAPIT 包可以在最小的计算时间内处理超过 10000 个人和 100 万个单核苷酸多态性的大型数据集,同时提供用户友好的访问和简洁的表格和图形来解释结果。
http://www.maizegenetics.net/GAPIT.
补充数据可在 Bioinformatics 在线获得。