Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA.
The Land Institute, 2440 E Water Well Rd, Salina, KS, 67401, USA.
Theor Appl Genet. 2021 Apr;134(4):1185-1200. doi: 10.1007/s00122-020-03763-1. Epub 2021 Jan 9.
Comparing populations derived, respectively, from polyploid Sorghum halepense and its progenitors improved knowledge of plant architecture and showed that S. halepense harbors genetic novelty of potential value for sorghum improvement Vegetative growth and the timing of the vegetative-to-reproductive transition are critical to a plant's fitness, directly and indirectly determining when and how a plant lives, grows and reproduces. We describe quantitative trait analysis of plant height and flowering time in the naturally occurring tetraploid Sorghum halepense, using two novel BCF populations totaling 246 genotypes derived from backcrossing two tetraploid Sorghum bicolor x S. halepense F plants to a tetraploidized S. bicolor. Phenotyping for two years each in Bogart, GA and Salina, KS allowed us to dissect variance into narrow-sense genetic (QTLs) and environmental components. In crosses with a common S. bicolor BTx623 parent, comparison of QTLs in S. halepense, its rhizomatous progenitor S. propinquum and S. bicolor race guinea which is highly divergent from BTx623 permit inferences of loci at which new alleles have been associated with improvement of elite sorghums. The relative abundance of QTLs unique to the S. halepense populations may reflect its polyploidy and subsequent 'diploidization' processes often associated with the formation of genetic novelty, a possibility further supported by a high level of QTL polymorphism within sibling lines derived from a common S. halepense parent. An intriguing hypothesis for further investigation is that polyploidy of S. halepense following 96 million years of abstinence, coupled with natural selection during its spread to diverse environments across six continents, may provide a rich collection of novel alleles that offer potential opportunities for sorghum improvement.
比较分别源自多倍体高粱和其祖先的种群,增进了对植物结构的认识,并表明高粱含有潜在有价值的遗传新颖性。营养生长和营养生长到生殖生长的转变时间对植物的适应性至关重要,直接和间接地决定了植物何时以及如何生存、生长和繁殖。我们描述了自然发生的四倍体高粱的株高和开花时间的数量性状分析,使用了两个新的 BCF 群体,这些群体总共由 246 个基因型组成,这些基因型是通过将两个四倍体高粱 x 高粱杂种 F1 植物回交到四倍体高粱中来衍生的。在佐治亚州的 Bogart 和堪萨斯州的 Salina 进行了两年的表型分析,使我们能够将方差分解为狭义遗传(QTL)和环境成分。在与共同的高粱 BTx623 亲本的杂交中,高粱、其根茎状祖先高粱和与 BTx623 高度分化的几内亚高粱 Race guinea 中的 QTL 比较,允许推断出与改良高粱相关的新等位基因所在的位点。仅在高粱种群中存在的 QTL 的相对丰度可能反映了其多倍体性和随后的“二倍化”过程,这通常与遗传新颖性的形成有关,这一可能性进一步得到了源自共同高粱亲本的同系物系中 QTL 多态性水平较高的支持。一个有趣的假说需要进一步研究,即高粱在 9600 万年的休眠后发生的多倍体化,以及其在跨越六大洲的不同环境中传播过程中的自然选择,可能提供了丰富的新型等位基因集合,为高粱改良提供了潜在的机会。