Suppr超能文献

小窝蛋白1在肾脏近端小管中AT1a受体介导的血管紧张素II摄取中的作用。

Role of caveolin 1 in AT1a receptor-mediated uptake of angiotensin II in the proximal tubule of the kidney.

作者信息

Li Xiao C, Gu Victor, Miguel-Qin Elise, Zhuo Jia L

机构信息

Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi.

Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi

出版信息

Am J Physiol Renal Physiol. 2014 Oct 15;307(8):F949-61. doi: 10.1152/ajprenal.00199.2014. Epub 2014 Aug 27.

Abstract

Caveolin 1 (CAV-1) functions not only as a constitutive scaffolding protein of caveolae but also as a vesicular transporter and signaling regulator. In the present study, we tested the hypothesis that CAV-1 knockout (CAV-1 KO) inhibits ANG II type 1 [AT1 (AT1a)] receptor-mediated uptake of ANG II in the proximal tubule and attenuates blood pressure responses in ANG II-induced hypertension. To determine the role of CAV-1 in mediating the uptake of FITC-labeled ANG II, wild-type (WT) mouse proximal convoluted tubule cells were transfected with CAV-1 small interfering (si)RNA for 48 h before AT1 receptor-mediated uptake of FITC-labeled ANG II was studied. CAV-1 siRNA knocked down CAV-1 expression by >90% (P < 0.01) and inhibited FITC-labeled ANG II uptake by >50% (P < 0.01). Moreover, CAV-1 siRNA attenuated ANG II-induced activation of MAPK ERK1/2 and Na(+)/H(+) exchanger 3 expression, respectively (P < 0.01). To determine whether CAV-1 regulates ANG II uptake in the proximal tubule, Alexa 488-labeled ANG II was infused into anesthetized WT and CAV-1 KO mice for 60 min (20 ng/min iv). Imaging analysis revealed that Alexa 488-labeled ANG II uptake was decreased by >50% in CAV-1 KO mice (P < 0.01). Furthermore, Val(5)-ANG II was infused into WT and CAV-1 KO mice for 2 wk (1.5 mg·kg(-1)·day(-1) ip). Basal systolic pressure was higher, whereas blood pressure and renal excretory and signaling responses to ANG II were attenuated, in CAV-1 KO mice (P < 0.01). We concluded that CAV-1 plays an important role in AT1 receptor-mediated uptake of ANG II in the proximal tubule and modulates blood pressure and renal responses to ANG II.

摘要

小窝蛋白1(CAV-1)不仅作为小窝的组成性支架蛋白发挥作用,还作为囊泡转运体和信号调节剂发挥作用。在本研究中,我们检验了以下假设:CAV-1基因敲除(CAV-1 KO)会抑制近端小管中血管紧张素II 1型[AT1(AT1a)]受体介导的血管紧张素II摄取,并减弱血管紧张素II诱导的高血压中的血压反应。为了确定CAV-1在介导异硫氰酸荧光素标记的血管紧张素II摄取中的作用,在研究AT1受体介导的异硫氰酸荧光素标记的血管紧张素II摄取之前,将野生型(WT)小鼠近端曲管细胞用CAV-1小干扰(si)RNA转染48小时。CAV-1 siRNA使CAV-1表达降低>90%(P<0.01),并使异硫氰酸荧光素标记的血管紧张素II摄取减少>50%(P<0.01)。此外,CAV-1 siRNA分别减弱了血管紧张素II诱导的MAPK ERK1/2激活和钠/氢交换体3表达(P<0.01)。为了确定CAV-1是否调节近端小管中的血管紧张素II摄取,将Alexa 488标记的血管紧张素II注入麻醉的WT和CAV-1 KO小鼠体内60分钟(静脉注射20 ng/分钟)。成像分析显示,CAV-1 KO小鼠中Alexa 488标记的血管紧张素II摄取减少>50%(P<0.01)。此外,将缬氨酸5-血管紧张素II注入WT和CAV-1 KO小鼠体内2周(腹腔注射1.5 mg·kg-1·天-1)。CAV-1 KO小鼠的基础收缩压较高,而对血管紧张素II的血压、肾脏排泄和信号反应减弱(P<0.01)。我们得出结论,CAV-1在近端小管中AT1受体介导的血管紧张素II摄取中起重要作用,并调节血压和肾脏对血管紧张素II的反应。

相似文献

1
Role of caveolin 1 in AT1a receptor-mediated uptake of angiotensin II in the proximal tubule of the kidney.
Am J Physiol Renal Physiol. 2014 Oct 15;307(8):F949-61. doi: 10.1152/ajprenal.00199.2014. Epub 2014 Aug 27.
2
Mechanisms of AT1a receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin.
Am J Physiol Renal Physiol. 2014 Jul 15;307(2):F222-33. doi: 10.1152/ajprenal.00693.2013. Epub 2014 Apr 16.
3
AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through a microtubule-dependent endocytic pathway.
Am J Physiol Renal Physiol. 2009 Nov;297(5):F1342-52. doi: 10.1152/ajprenal.90734.2008. Epub 2009 Sep 2.
5
Novel signaling mechanisms of intracellular angiotensin II-induced NHE3 expression and activation in mouse proximal tubule cells.
Am J Physiol Renal Physiol. 2012 Dec 15;303(12):F1617-28. doi: 10.1152/ajprenal.00219.2012. Epub 2012 Oct 3.
6
8
Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT1a/MAPK/NF-кB signaling pathways.
Am J Physiol Renal Physiol. 2016 May 1;310(10):F1103-12. doi: 10.1152/ajprenal.00350.2015. Epub 2016 Feb 10.
9
Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice.
Am J Physiol Regul Integr Comp Physiol. 2013 Apr 15;304(8):R588-98. doi: 10.1152/ajpregu.00338.2012. Epub 2013 Feb 20.

引用本文的文献

1
The Renin-Angiotensin-Aldosterone System (RAAS): Beyond Cardiovascular Regulation.
Vet Sci. 2025 Aug 20;12(8):777. doi: 10.3390/vetsci12080777.
2
Interplay between caveolin-1 and mineralocorticoid receptor in cardiometabolic disease.
J Endocrinol. 2024 Jul 18;262(3). doi: 10.1530/JOE-23-0341. Print 2024 Sep 1.
3
The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension.
Front Cardiovasc Med. 2024 Feb 2;11:1345218. doi: 10.3389/fcvm.2024.1345218. eCollection 2024.
5
The renal antioxidative effect of losartan involves heat shock protein 70 in proximal tubule cells.
Cell Stress Chaperones. 2020 Sep;25(5):753-766. doi: 10.1007/s12192-020-01119-8. Epub 2020 May 23.
6
Role of Caveolin-1 in Diabetes and Its Complications.
Oxid Med Cell Longev. 2020 Jan 27;2020:9761539. doi: 10.1155/2020/9761539. eCollection 2020.
7
Megalin: A bridge connecting kidney, the renin-angiotensin system, and atherosclerosis.
Pharmacol Res. 2020 Jan;151:104537. doi: 10.1016/j.phrs.2019.104537. Epub 2019 Nov 7.
8
Pathophysiological Role of Caveolae in Hypertension.
Front Med (Lausanne). 2019 Jul 10;6:153. doi: 10.3389/fmed.2019.00153. eCollection 2019.
9
Suppression of angiotensin II-induced pathological changes in heart and kidney by the caveolin-1 scaffolding domain peptide.
PLoS One. 2018 Dec 21;13(12):e0207844. doi: 10.1371/journal.pone.0207844. eCollection 2018.
10
Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology.
Physiol Rev. 2018 Jul 1;98(3):1627-1738. doi: 10.1152/physrev.00038.2017.

本文引用的文献

1
Mechanisms of AT1a receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin.
Am J Physiol Renal Physiol. 2014 Jul 15;307(2):F222-33. doi: 10.1152/ajprenal.00693.2013. Epub 2014 Apr 16.
2
Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice.
PLoS One. 2014 Mar 21;9(3):e92428. doi: 10.1371/journal.pone.0092428. eCollection 2014.
4
Dissociation of hyperglycemia from altered vascular contraction and relaxation mechanisms in caveolin-1 null mice.
J Pharmacol Exp Ther. 2014 Feb;348(2):260-70. doi: 10.1124/jpet.113.209189. Epub 2013 Nov 26.
5
Differential regulation of Na+ transporters along nephron during ANG II-dependent hypertension: distal stimulation counteracted by proximal inhibition.
Am J Physiol Renal Physiol. 2013 Aug 15;305(4):F510-9. doi: 10.1152/ajprenal.00183.2013. Epub 2013 May 29.
6
Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice.
Am J Physiol Regul Integr Comp Physiol. 2013 Apr 15;304(8):R588-98. doi: 10.1152/ajpregu.00338.2012. Epub 2013 Feb 20.
7
Caveolae as plasma membrane sensors, protectors and organizers.
Nat Rev Mol Cell Biol. 2013 Feb;14(2):98-112. doi: 10.1038/nrm3512.
8
Novel signaling mechanisms of intracellular angiotensin II-induced NHE3 expression and activation in mouse proximal tubule cells.
Am J Physiol Renal Physiol. 2012 Dec 15;303(12):F1617-28. doi: 10.1152/ajprenal.00219.2012. Epub 2012 Oct 3.
9
Direct renin inhibition modulates insulin resistance in caveolin-1-deficient mice.
Metabolism. 2013 Feb;62(2):275-81. doi: 10.1016/j.metabol.2012.07.013. Epub 2012 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验