Wolf R N, Beck D, Blaum K, Böhm Ch, Borgmann Ch, Breitenfeldt M, Chamel N, Goriely S, Herfurth F, Kowalska M, Kreim S, Lunney D, Manea V, Minaya Ramirez E, Naimi S, Neidherr D, Rosenbusch M, Schweikhard L, Stanja J, Wienholtz F, Zuber K
Institut für Physik, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald, Germany.
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany.
Phys Rev Lett. 2013 Jan 25;110(4):041101. doi: 10.1103/PhysRevLett.110.041101. Epub 2013 Jan 22.
Modeling the composition of neutron-star crusts depends strongly on binding energies of neutron-rich nuclides near the N = 50 and N = 82 shell closures. Using a recent development of time-of-flight mass spectrometry for on-line purification of radioactive ion beams to access more exotic species, we have determined for the first time the mass of (82)Zn with the ISOLTRAP setup at the ISOLDE-CERN facility. With a robust neutron-star model based on nuclear energy-density-functional theory, we solve the general relativistic Tolman-Oppenheimer-Volkoff equations and calculate the neutron-star crust composition based on the new experimental mass. The composition profile is not only altered but now constrained by experimental data deeper into the crust than before.
对中子星地壳成分进行建模在很大程度上取决于靠近N = 50和N = 82壳层闭壳处富中子核素的结合能。利用最近发展的用于在线纯化放射性离子束以获取更多奇异核素的飞行时间质谱技术,我们首次在欧洲核子研究组织(CERN)的ISOLDE设施的ISOLTRAP装置上确定了(82)Zn的质量。借助基于核能密度泛函理论的强大中子星模型,我们求解了广义相对论的托尔曼 - 奥本海默 - 沃尔科夫方程,并根据新的实验质量计算了中子星地壳的成分。成分分布不仅发生了变化,而且现在比以前受到了更深地壳层实验数据的约束。