Piltz Ch, Scharfenberger B, Khromova A, Varón A F, Wunderlich Ch
Department Physik, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany.
Phys Rev Lett. 2013 May 17;110(20):200501. doi: 10.1103/PhysRevLett.110.200501. Epub 2013 May 16.
Dephasing--phase randomization of a quantum superposition state--is a major obstacle for the realization of high fidelity quantum logic operations. Here, we implement a two-qubit controlled-NOT gate using dynamical decoupling (DD), despite the gate time being more than 1 order of magnitude longer than the intrinsic coherence time of the system. For realizing this universal conditional quantum gate, we have devised a concatenated DD sequence that ensures robustness against imperfections of DD pulses that otherwise may destroy quantum information or interfere with gate dynamics. We compare its performance with three other types of DD sequences. These experiments are carried out using a well-controlled prototype quantum system--trapped atomic ions coupled by an effective spin-spin interaction. The scheme for protecting conditional quantum gates demonstrated here is applicable to other physical systems, such as nitrogen vacancy centers, solid state nuclear magnetic resonance, and circuit quantum electrodynamics.
退相——量子叠加态的相位随机化——是实现高保真量子逻辑操作的主要障碍。在此,我们利用动态解耦(DD)实现了一个两比特受控非门,尽管门操作时间比系统的本征相干时间长一个多数量级。为了实现这个通用的条件量子门,我们设计了一个级联DD序列,该序列可确保对DD脉冲的不完善具有鲁棒性,否则这些不完善可能会破坏量子信息或干扰门操作动力学。我们将其性能与其他三种类型的DD序列进行了比较。这些实验是使用一个控制良好的原型量子系统——通过有效的自旋 - 自旋相互作用耦合的囚禁原子离子进行的。这里展示的保护条件量子门的方案适用于其他物理系统,如氮空位中心、固态核磁共振和电路量子电动力学。