Suppr超能文献

细菌产生的强力胶水:蛋白质纳米技术的坚固桥梁

Superglue from bacteria: unbreakable bridges for protein nanotechnology.

作者信息

Veggiani Gianluca, Zakeri Bijan, Howarth Mark

机构信息

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.

MIT Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Trends Biotechnol. 2014 Oct;32(10):506-12. doi: 10.1016/j.tibtech.2014.08.001. Epub 2014 Aug 26.

Abstract

Biotechnology is often limited by weak interactions. We suggest that an ideal interaction between proteins would be covalent, specific, require addition of only a peptide tag to the protein of interest, and form under a wide range of conditions. Here we summarize peptide tags that are able to form spontaneous amide bonds, based on harnessing reactions of adhesion proteins from the bacterium Streptococcus pyogenes. These include the irreversible peptide-protein interaction of SpyTag with SpyCatcher, as well as irreversible peptide-peptide interactions via SpyLigase. We describe existing applications, including polymerization to enhance cancer cell capture, assembly of living biomaterial, access to diverse protein shapes, and improved enzyme resilience. We also indicate future opportunities for resisting biological force and extending the scope of protein nanotechnology.

摘要

生物技术常常受到弱相互作用的限制。我们认为,蛋白质之间的理想相互作用应该是共价的、特异性的,只需向目标蛋白质添加一个肽标签,并且能在广泛的条件下形成。在此,我们总结了基于利用化脓性链球菌粘附蛋白反应而能够形成自发酰胺键的肽标签。这些包括SpyTag与SpyCatcher的不可逆肽-蛋白质相互作用,以及通过SpyLigase的不可逆肽-肽相互作用。我们描述了现有的应用,包括用于增强癌细胞捕获的聚合反应、活性生物材料的组装、获得多种蛋白质形状以及提高酶的弹性。我们还指出了未来在抵抗生物力和扩展蛋白质纳米技术范围方面的机遇。

相似文献

1
Superglue from bacteria: unbreakable bridges for protein nanotechnology.
Trends Biotechnol. 2014 Oct;32(10):506-12. doi: 10.1016/j.tibtech.2014.08.001. Epub 2014 Aug 26.
2
Structural analysis and optimization of the covalent association between SpyCatcher and a peptide Tag.
J Mol Biol. 2014 Jan 23;426(2):309-17. doi: 10.1016/j.jmb.2013.10.021. Epub 2013 Oct 23.
3
SpyLigase peptide-peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1176-81. doi: 10.1073/pnas.1315776111. Epub 2014 Mar 17.
5
Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E690-7. doi: 10.1073/pnas.1115485109. Epub 2012 Feb 24.
6
Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher.
Curr Opin Chem Biol. 2015 Dec;29:94-9. doi: 10.1016/j.cbpa.2015.10.002. Epub 2015 Oct 30.
7
Evolving Accelerated Amidation by SpyTag/SpyCatcher to Analyze Membrane Dynamics.
Angew Chem Int Ed Engl. 2017 Dec 22;56(52):16521-16525. doi: 10.1002/anie.201707623. Epub 2017 Dec 5.
8
Insider information on successful covalent protein coupling with help from SpyBank.
Methods Enzymol. 2019;617:443-461. doi: 10.1016/bs.mie.2018.12.010. Epub 2019 Jan 25.
9
Smart superglue in streptococci? The proof is in the pulling.
J Biol Chem. 2017 May 26;292(21):8998-8999. doi: 10.1074/jbc.H117.777466.
10
Kinetic Controlled Tag-Catcher Interactions for Directed Covalent Protein Assembly.
PLoS One. 2016 Oct 26;11(10):e0165074. doi: 10.1371/journal.pone.0165074. eCollection 2016.

引用本文的文献

1
Effect of Poly-γ-Glutamic Acid Molecular Weight on the Properties of Whey Protein Isolate Hydrogels.
Polymers (Basel). 2025 Jun 9;17(12):1605. doi: 10.3390/polym17121605.
2
Research strategies of the N-peptide fusion inhibitor: a promising direction for discovering novel antivirals.
J Virol. 2025 May 20;99(5):e0228924. doi: 10.1128/jvi.02289-24. Epub 2025 Apr 10.
3
De Novo Design of Proteins for Autocatalytic Isopeptide Bond Formation.
J Am Chem Soc. 2025 Apr 9;147(14):12338-12346. doi: 10.1021/jacs.5c03319. Epub 2025 Mar 26.
5
Recent Developments in Engineering Non-Paralytic Botulinum Molecules for Therapeutic Applications.
Toxins (Basel). 2024 Apr 3;16(4):175. doi: 10.3390/toxins16040175.
8
Improving the specific activity and stability of alkaline pectinase PEL3 through SpyTag/SpyCatcher cyclization.
Biotechnol Lett. 2023 Jul;45(7):847-859. doi: 10.1007/s10529-023-03385-9. Epub 2023 May 12.
9
Nature-inspired protein ligation and its applications.
Nat Rev Chem. 2023 Apr;7(4):234-255. doi: 10.1038/s41570-023-00468-z. Epub 2023 Feb 21.
10
Design and immunological evaluation of two-component protein nanoparticle vaccines for East Coast fever.
Front Immunol. 2023 Jan 13;13:1015840. doi: 10.3389/fimmu.2022.1015840. eCollection 2022.

本文引用的文献

1
New trends and affinity tag designs for recombinant protein purification.
Curr Opin Struct Biol. 2014 Jun;26:54-61. doi: 10.1016/j.sbi.2014.04.006. Epub 2014 Jun 12.
2
SpyTag/SpyCatcher cyclization confers resilience to boiling on a mesophilic enzyme.
Angew Chem Int Ed Engl. 2014 Jun 10;53(24):6101-4. doi: 10.1002/anie.201402519. Epub 2014 May 9.
3
Affinity-guided covalent conjugation reactions based on PDZ-peptide and SH3-peptide interactions.
Bioconjug Chem. 2014 May 21;25(5):989-99. doi: 10.1021/bc500134w. Epub 2014 Apr 24.
4
Synthesis and patterning of tunable multiscale materials with engineered cells.
Nat Mater. 2014 May;13(5):515-23. doi: 10.1038/nmat3912. Epub 2014 Mar 23.
5
SpyLigase peptide-peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1176-81. doi: 10.1073/pnas.1315776111. Epub 2014 Mar 17.
6
Inteins: Nature's Gift to Protein Chemists.
Chem Sci. 2014;5(1):446-461. doi: 10.1039/C3SC52951G.
7
Structural analysis and optimization of the covalent association between SpyCatcher and a peptide Tag.
J Mol Biol. 2014 Jan 23;426(2):309-17. doi: 10.1016/j.jmb.2013.10.021. Epub 2013 Oct 23.
8
Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration.
Am J Physiol Cell Physiol. 2014 Jan 15;306(2):C98-C109. doi: 10.1152/ajpcell.00289.2013. Epub 2013 Oct 16.
9
Controlling macromolecular topology with genetically encoded SpyTag-SpyCatcher chemistry.
J Am Chem Soc. 2013 Sep 18;135(37):13988-97. doi: 10.1021/ja4076452. Epub 2013 Sep 9.
10
Nanomechanics of HaloTag tethers.
J Am Chem Soc. 2013 Aug 28;135(34):12762-71. doi: 10.1021/ja4056382. Epub 2013 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验