Schmidt Sein, Bathe-Peters Rouven, Fleischmann Robert, Rönnefarth Maria, Scholz Michael, Brandt Stephan A
Vision & Motor Research Group, Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
Hum Brain Mapp. 2015 Jan;36(1):40-9. doi: 10.1002/hbm.22611. Epub 2014 Aug 29.
Brain stimulation is used to induce transient alterations of neural excitability to probe or modify brain function. For example, single-pulse transcranial magnetic stimulation (TMS) of the motor cortex can probe corticospinal excitability (CSE). Yet, CSE measurements are confounded by a high level of variability. This variability is due to physical and physiological factors. Navigated TMS (nTMS) systems can record physical parameters of the TMS coil (tilt, location, and orientation) and some also estimate intracortical electric fields (EFs) on a trial-by-trial basis. Thus, these parameters can be partitioned with stepwise regression.
The primary objective was to dissociate variance due to physical parameters from variance due to physiological factors for CSE estimates. The secondary objective was to establish the predictive validity of EF estimates from spherical head models.
Variability of physical parameters of TMS predicts CSE variability.
Event-related measurements of physical parameters were analyzed in stepwise regression. Partitioned parameter variance and predictive validity were compared for a target-controlled and a nontarget-controlled experiment. A control experiment (preinnervation) confirmed the validity of linear data analysis. A bias-free model quantified the effect of divergence from optimum.
Partitioning physical parameter variance reduces CSE variability. EF estimates from spherical models were valid. Post hoc analyses showed that even small physical fluctuations can confound the statistical comparison of CSE measurements.
It is necessary to partition physical and physiological variance in TMS studies to make confounded data interpretable. The spatial resolution of nTMS is <5 mm and the EF-estimates are valid.
脑刺激用于诱导神经兴奋性的短暂改变,以探究或改变脑功能。例如,对运动皮层进行单脉冲经颅磁刺激(TMS)可探测皮质脊髓兴奋性(CSE)。然而,CSE测量受到高度变异性的干扰。这种变异性是由物理和生理因素导致的。导航TMS(nTMS)系统可以记录TMS线圈的物理参数(倾斜、位置和方向),一些系统还可以逐次估计皮质内电场(EFs)。因此,这些参数可以通过逐步回归进行划分。
主要目标是将CSE估计中由物理参数引起的方差与由生理因素引起的方差区分开来。次要目标是确定球形头部模型的EF估计的预测有效性。
TMS物理参数的变异性可预测CSE变异性。
在逐步回归中分析与事件相关的物理参数测量值。比较目标控制实验和非目标控制实验的划分参数方差和预测有效性。一个对照实验(预神经支配)证实了线性数据分析的有效性。一个无偏差模型量化了与最优值偏差的影响。
划分物理参数方差可降低CSE变异性。球形模型的EF估计是有效的。事后分析表明,即使是很小的物理波动也会混淆CSE测量的统计比较。
在TMS研究中,有必要划分物理和生理方差,以使混淆的数据具有可解释性。nTMS的空间分辨率<5毫米,EF估计是有效的。