Suppr超能文献

导航经颅磁刺激研究中的非生理因素;混杂协变量与有效的皮质内估计

Nonphysiological factors in navigated TMS studies; confounding covariates and valid intracortical estimates.

作者信息

Schmidt Sein, Bathe-Peters Rouven, Fleischmann Robert, Rönnefarth Maria, Scholz Michael, Brandt Stephan A

机构信息

Vision & Motor Research Group, Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.

出版信息

Hum Brain Mapp. 2015 Jan;36(1):40-9. doi: 10.1002/hbm.22611. Epub 2014 Aug 29.

Abstract

UNLABELLED

Brain stimulation is used to induce transient alterations of neural excitability to probe or modify brain function. For example, single-pulse transcranial magnetic stimulation (TMS) of the motor cortex can probe corticospinal excitability (CSE). Yet, CSE measurements are confounded by a high level of variability. This variability is due to physical and physiological factors. Navigated TMS (nTMS) systems can record physical parameters of the TMS coil (tilt, location, and orientation) and some also estimate intracortical electric fields (EFs) on a trial-by-trial basis. Thus, these parameters can be partitioned with stepwise regression.

PURPOSE

The primary objective was to dissociate variance due to physical parameters from variance due to physiological factors for CSE estimates. The secondary objective was to establish the predictive validity of EF estimates from spherical head models.

HYPOTHESIS

Variability of physical parameters of TMS predicts CSE variability.

METHODS

Event-related measurements of physical parameters were analyzed in stepwise regression. Partitioned parameter variance and predictive validity were compared for a target-controlled and a nontarget-controlled experiment. A control experiment (preinnervation) confirmed the validity of linear data analysis. A bias-free model quantified the effect of divergence from optimum.

RESULTS

Partitioning physical parameter variance reduces CSE variability. EF estimates from spherical models were valid. Post hoc analyses showed that even small physical fluctuations can confound the statistical comparison of CSE measurements.

CONCLUSIONS

It is necessary to partition physical and physiological variance in TMS studies to make confounded data interpretable. The spatial resolution of nTMS is <5 mm and the EF-estimates are valid.

摘要

未标注

脑刺激用于诱导神经兴奋性的短暂改变,以探究或改变脑功能。例如,对运动皮层进行单脉冲经颅磁刺激(TMS)可探测皮质脊髓兴奋性(CSE)。然而,CSE测量受到高度变异性的干扰。这种变异性是由物理和生理因素导致的。导航TMS(nTMS)系统可以记录TMS线圈的物理参数(倾斜、位置和方向),一些系统还可以逐次估计皮质内电场(EFs)。因此,这些参数可以通过逐步回归进行划分。

目的

主要目标是将CSE估计中由物理参数引起的方差与由生理因素引起的方差区分开来。次要目标是确定球形头部模型的EF估计的预测有效性。

假设

TMS物理参数的变异性可预测CSE变异性。

方法

在逐步回归中分析与事件相关的物理参数测量值。比较目标控制实验和非目标控制实验的划分参数方差和预测有效性。一个对照实验(预神经支配)证实了线性数据分析的有效性。一个无偏差模型量化了与最优值偏差的影响。

结果

划分物理参数方差可降低CSE变异性。球形模型的EF估计是有效的。事后分析表明,即使是很小的物理波动也会混淆CSE测量的统计比较。

结论

在TMS研究中,有必要划分物理和生理方差,以使混淆的数据具有可解释性。nTMS的空间分辨率<5毫米,EF估计是有效的。

相似文献

1
Nonphysiological factors in navigated TMS studies; confounding covariates and valid intracortical estimates.
Hum Brain Mapp. 2015 Jan;36(1):40-9. doi: 10.1002/hbm.22611. Epub 2014 Aug 29.
2
Efficient Mapping of the Motor Cortex with Navigated Biphasic Paired-Pulse Transcranial Magnetic Stimulation.
Brain Topogr. 2018 Nov;31(6):963-971. doi: 10.1007/s10548-018-0660-9. Epub 2018 Jul 3.
3
An initial transient-state and reliable measures of corticospinal excitability in TMS studies.
Clin Neurophysiol. 2009 May;120(5):987-93. doi: 10.1016/j.clinph.2009.02.164. Epub 2009 Apr 8.
4
Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent.
Brain Stimul. 2017 Nov-Dec;10(6):1055-1060. doi: 10.1016/j.brs.2017.07.009. Epub 2017 Jul 27.
7
TMS coil orientation and muscle activation influence lower limb intracortical excitability.
Brain Res. 2020 Nov 1;1746:147027. doi: 10.1016/j.brainres.2020.147027. Epub 2020 Jul 24.

引用本文的文献

4
Assessment of Motor Evoked Potentials in Multiple Sclerosis.
Sensors (Basel). 2023 Jan 2;23(1):497. doi: 10.3390/s23010497.
5
Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice?
Brain Sci. 2021 Sep 18;11(9):1234. doi: 10.3390/brainsci11091234.
6
TMS Motor Mapping Methodology and Reliability: A Structured Review.
Front Neurosci. 2021 Aug 19;15:709368. doi: 10.3389/fnins.2021.709368. eCollection 2021.
8
Comparing cortico-motor hotspot identification methods in the lower extremities post-stroke: MEP amplitude vs. latency.
Neurosci Lett. 2021 May 29;754:135884. doi: 10.1016/j.neulet.2021.135884. Epub 2021 Apr 19.
10
Investigating the Intervention Parameters of Endogenous Paired Associative Stimulation (ePAS).
Brain Sci. 2021 Feb 12;11(2):224. doi: 10.3390/brainsci11020224.

本文引用的文献

1
3
Neural interfaces for the brain and spinal cord--restoring motor function.
Nat Rev Neurol. 2012 Dec;8(12):690-9. doi: 10.1038/nrneurol.2012.219. Epub 2012 Nov 13.
4
Variation of stimulation intensity in transcranial magnetic stimulation with depth.
J Neurosci Methods. 2012 Nov 15;211(2):185-90. doi: 10.1016/j.jneumeth.2012.09.007. Epub 2012 Sep 19.
5
The functional importance of rhythmic activity in the brain.
Curr Biol. 2012 Aug 21;22(16):R658-63. doi: 10.1016/j.cub.2012.06.061.
6
The effect of stimulus parameters on TMS-EEG muscle artifacts.
Brain Stimul. 2013 May;6(3):371-6. doi: 10.1016/j.brs.2012.07.005. Epub 2012 Aug 10.
7
Stimulus intensity for hand held and robotic transcranial magnetic stimulation.
Brain Stimul. 2013 May;6(3):315-21. doi: 10.1016/j.brs.2012.06.002. Epub 2012 Jun 21.
8
Rhythmic TMS causes local entrainment of natural oscillatory signatures.
Curr Biol. 2011 Jul 26;21(14):1176-85. doi: 10.1016/j.cub.2011.05.049. Epub 2011 Jun 30.
10
Neuroplasticity in the context of motor rehabilitation after stroke.
Nat Rev Neurol. 2011 Feb;7(2):76-85. doi: 10.1038/nrneurol.2010.200. Epub 2011 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验