Suppr超能文献

一种制备氢封端硅纳米颗粒的新方法:合成、功能化及水稳定性

A New Solution Route to Hydrogen Terminated Silicon Nanoparticles: Synthesis, Functionalization, and Water Stability.

作者信息

Zhang Xiaoming, Neiner Doinita, Wang Shizhong, Louie Angelique Y, Kauzlarich Susan M

机构信息

Department of Chemistry, University of California, Davis, CA 95616 ; Department of Biomedical Engineering, University of California, Davis, CA 95616.

Department of Chemistry, University of California, Davis, CA 95616.

出版信息

Nanotechnology. 2007 Jan 24;18(9):095601-95601. doi: 10.1088/0957-4484/18/9/095601.

Abstract

Hydrogen capped silicon nanoparticles with strong blue photoluminescence were synthesized by the metathesis reaction of sodium silicide, NaSi, with NHBr. The hydrogen capped Si nanoparticles were further terminated with octyl groups and then coated with a polymer to render them water soluble. The nanoparticles were characterized by TEM, FT-IR, UV-VIS absorption, and photoluminescence. The Si nanoparticles were shown to have an average diameter of 3.9 ±1.3 nm and exhibited room-temperature photoluminescence with a peak maximum at 438 nm with a quantum efficiency of 32% in hexane and 18% in water; the emission was stable in ambient air for up to 2 months. These nanoparticles could hold great potential as a non-heavy element containing quantum dot for applications in biology.

摘要

通过硅化钠(NaSi)与NHBr的复分解反应合成了具有强蓝光光致发光的氢封端硅纳米颗粒。氢封端的硅纳米颗粒进一步用辛基封端,然后用聚合物包覆以使其具有水溶性。通过透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、紫外-可见吸收光谱和光致发光对纳米颗粒进行了表征。结果表明,硅纳米颗粒的平均直径为3.9±1.3 nm,在室温下具有光致发光特性,在己烷中的最大发射峰位于438 nm处,量子效率为32%,在水中为18%;其发射在环境空气中可稳定长达2个月。这些纳米颗粒作为一种不含重金属元素的量子点在生物学应用中具有巨大潜力。

相似文献

1
A New Solution Route to Hydrogen Terminated Silicon Nanoparticles: Synthesis, Functionalization, and Water Stability.
Nanotechnology. 2007 Jan 24;18(9):095601-95601. doi: 10.1088/0957-4484/18/9/095601.
2
New synthetic route of alkyl-terminated silicon nanoparticles and their optical characteristics.
J Nanosci Nanotechnol. 2010 May;10(5):3557-61. doi: 10.1166/jnn.2010.2332.
3
Photophysical properties of blue - emitting silicon nanoparticles.
J Phys Chem C Nanomater Interfaces. 2009 Aug 6;113(31):13694-13702. doi: 10.1021/jp903727n. Epub 2009 Jul 8.
4
Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells.
ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7384-91. doi: 10.1021/am4017126. Epub 2013 Jul 16.
5
Size-tunable silicon nanoparticles synthesized in solution a redox reaction.
Nanoscale. 2024 Apr 25;16(16):7958-7964. doi: 10.1039/d3nr05793c.
6
Development of iron-doped silicon nanoparticles as bimodal imaging agents.
ACS Nano. 2012 Jun 26;6(6):5596-604. doi: 10.1021/nn301536n. Epub 2012 May 29.
7
Size controlled synthesis of silicon nanocrystals using cationic surfactant templates.
Small. 2014 Feb 12;10(3):584-90. doi: 10.1002/smll.201301189. Epub 2013 Sep 11.
8
Fast room-temperature functionalization of silicon nanoparticles using alkyl silanols.
Faraday Discuss. 2020 Jun 19;222(0):82-94. doi: 10.1039/c9fd00102f.

引用本文的文献

1
Size-tunable silicon nanoparticles synthesized in solution a redox reaction.
Nanoscale. 2024 Apr 25;16(16):7958-7964. doi: 10.1039/d3nr05793c.
2
A review on application of nanoparticles for EOR purposes: history and current challenges.
J Pet Explor Prod Technol. 2023;13(4):959-994. doi: 10.1007/s13202-022-01606-x. Epub 2023 Jan 10.
3
Microwave plasma-assisted silicon nanoparticles: cytotoxic, molecular, and numerical responses against cancer cells.
RSC Adv. 2019 Apr 30;9(23):13336-13347. doi: 10.1039/c8ra10185j. eCollection 2019 Apr 25.
4
Facile production of ultra-fine silicon nanoparticles.
R Soc Open Sci. 2020 Sep 16;7(9):200736. doi: 10.1098/rsos.200736. eCollection 2020 Sep.
5
Zintl Phases as Reactive Precursors for Synthesis of Novel Silicon and Germanium-Based Materials.
Materials (Basel). 2019 Apr 8;12(7):1139. doi: 10.3390/ma12071139.
6
The Surface of Nanoparticle Silicon as Studied by Solid-State NMR.
Materials (Basel). 2012 Dec 20;6(1):18-46. doi: 10.3390/ma6010018.
7
EPR and Structural Characterization of Water-Soluble Mn-Doped Si Nanoparticles.
J Phys Chem C Nanomater Interfaces. 2017 Jan 26;121(3):1948-1956. doi: 10.1021/acs.jpcc.6b11000. Epub 2016 Dec 22.
9
All-printed diode operating at 1.6 GHz.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):11943-8. doi: 10.1073/pnas.1401676111. Epub 2014 Jul 7.
10
Synthesis of long T₁ silicon nanoparticles for hyperpolarized ²⁹Si magnetic resonance imaging.
ACS Nano. 2013 Feb 26;7(2):1609-17. doi: 10.1021/nn305462y. Epub 2013 Feb 7.

本文引用的文献

1
High surface area silicon materials: fundamentals and new technology.
Philos Trans A Math Phys Eng Sci. 2006 Jan 15;364(1838):217-25. doi: 10.1098/rsta.2005.1681.
2
Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals.
Chem Commun (Camb). 2006 Oct 28(40):4160-8. doi: 10.1039/b607476f. Epub 2006 Sep 8.
3
Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles.
J Am Chem Soc. 2006 Aug 30;128(34):11016-7. doi: 10.1021/ja064177q.
5
Synthesis of luminescent silicon nanopowders redispersible to various solvents.
Langmuir. 2005 Jul 5;21(14):6324-9. doi: 10.1021/la050346t.
6
Water-soluble photoluminescent silicon quantum dots.
Angew Chem Int Ed Engl. 2005 Jul 18;44(29):4550-4. doi: 10.1002/anie.200501256.
8
High-yield plasma synthesis of luminescent silicon nanocrystals.
Nano Lett. 2005 Apr;5(4):655-9. doi: 10.1021/nl050066y.
9
Immobilization of gold nanoparticles onto silicon surfaces by Si-C covalent bonds.
Langmuir. 2004 Feb 17;20(4):1054-6. doi: 10.1021/la036437c.
10
Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals.
Chem Commun (Camb). 2005 Apr 14(14):1833-5. doi: 10.1039/b416069j. Epub 2005 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验