Suppr超能文献

假性剥脱性青光眼的基因组学和蛋白质组学病理生理学

Genomic and proteomic pathophysiology of pseudoexfoliation glaucoma.

作者信息

Vazquez Luis E, Lee Richard K

出版信息

Int Ophthalmol Clin. 2014 Fall;54(4):1-13. doi: 10.1097/IIO.0000000000000047.

Abstract

PEX stems from a pathologic elastotic process involving the cross-linking gene lysyl oxidase-like-1 (LOXL1), and is associated with abnormal formation of elastic extracellular matrix. We previously described a protein sink model to explain PEX material deposition on the lens capsule and other intraocular surfaces. Recent research findings not only provide evidence to support this hypothesis, but also further our understanding of the fundamental disease process. A key aspect of the pathogenic process is the compromise of blood-aqueous barrier integrity in PEXG. Decreased level of LOXL1 is associated with decreased elastin incorporation into elastic tissues, including the elastic lamina of blood vessels. This results in unincorporated elastin that is released as soluble elastin, and leakage of serum proteins, inflammatory cytokines, and extracellular matrix components into aqueous humor. This ultimately leads to aggregation and precipitation of large protein complexes, or PEX material, throughout intraocular surfaces as described in the protein sink model. The pathologic PEX process also affects the biomechanical properties of elastic tissues, such as the trabecular meshwork, lens zonules, and lamina cribrosa. This may be part of the primary pathologic process with intrinsically altered extracellular matrix proteins. This fundamental change in the structural composition of these tissues may alter their rigidity, elasticity, and other biomechanical properties. This likely contributes to increased trabecular meshwork outflow resistance and high intraocular pressure, and mechanical injury to retinal ganglion cell axons at the lamina cribrosa, which are conducive to glaucoma. These pathophysiologic processes combined may underlie some of the clinical hallmarks observed in PEXG.

摘要

假性剥脱综合征(PEX)源于一种涉及交联基因赖氨酰氧化酶样-1(LOXL1)的病理性弹性组织变性过程,并与弹性细胞外基质的异常形成有关。我们之前描述了一种蛋白质汇聚模型来解释PEX物质在晶状体囊膜和其他眼内表面的沉积。最近的研究结果不仅为支持这一假说提供了证据。还进一步加深了我们对这一基础疾病过程的理解。致病过程的一个关键方面是PEXG中血-房水屏障完整性的受损。LOXL1水平降低与弹性蛋白掺入弹性组织(包括血管弹性膜)减少有关。这导致未掺入的弹性蛋白以可溶性弹性蛋白的形式释放,以及血清蛋白、炎性细胞因子和细胞外基质成分渗漏到房水中。这最终导致大蛋白复合物或PEX物质在整个眼内表面聚集和沉淀,正如蛋白质汇聚模型中所描述的那样。病理性PEX过程还会影响弹性组织的生物力学特性,如小梁网、晶状体悬韧带和筛板组织。这可能是细胞外基质蛋白内在改变的原发性病理过程的一部分。这些组织结构组成的这种根本变化可能会改变它们的硬度、弹性和其他生物力学特性。这可能导致小梁网流出阻力增加和眼压升高,以及筛板处视网膜神经节细胞轴突受到机械损伤,这些都有利于青光眼的发生。这些病理生理过程综合起来可能是PEXG中一些临床特征的基础。

相似文献

1
Genomic and proteomic pathophysiology of pseudoexfoliation glaucoma.
Int Ophthalmol Clin. 2014 Fall;54(4):1-13. doi: 10.1097/IIO.0000000000000047.
2
The molecular pathophysiology of pseudoexfoliation glaucoma.
Curr Opin Ophthalmol. 2008 Mar;19(2):95-101. doi: 10.1097/ICU.0b013e3282f49cda.
3
Exfoliation syndrome: beyond glaucoma.
Arch Ophthalmol. 2008 Jun;126(6):859-61. doi: 10.1001/archopht.126.6.859.
4
Proteomics of pseudoexfoliation materials in the anterior eye segment.
Adv Protein Chem Struct Biol. 2021;127:271-290. doi: 10.1016/bs.apcsb.2021.03.004. Epub 2021 Apr 26.
5
Paraoxonase 1 (PON1) promoter (-107T/C) and coding region (192Q/R and 55L/M) genetic variations in pseudoexfoliation syndrome and pseudoexfoliative glaucoma risk.
Graefes Arch Clin Exp Ophthalmol. 2019 Oct;257(10):2257-2270. doi: 10.1007/s00417-019-04408-w. Epub 2019 Jul 10.
8
The role of lysyl oxidase-like 1 (LOXL1) in exfoliation syndrome and glaucoma.
Exp Eye Res. 2019 Dec;189:107818. doi: 10.1016/j.exer.2019.107818. Epub 2019 Sep 26.
9
Pseudoexfoliation syndrome and glaucoma: from genes to disease mechanisms.
Curr Opin Ophthalmol. 2021 Mar 1;32(2):118-128. doi: 10.1097/ICU.0000000000000736.
10
Genetics of exfoliation syndrome and glaucoma.
Int Ophthalmol Clin. 2014 Fall;54(4):43-56. doi: 10.1097/IIO.0000000000000042.

引用本文的文献

1
Metabolite Analysis from Protein Deposits.
Methods Mol Biol. 2025;2925:103-112. doi: 10.1007/978-1-0716-4534-5_6.
2
Presence of pseudoexfoliation-like material in young patients.
Indian J Ophthalmol. 2025 May 1;73(5):764-768. doi: 10.4103/IJO.IJO_1998_24. Epub 2025 Apr 24.
3
Aqueous humor metabolomic profiling identifies a distinct signature in pseudoexfoliation syndrome.
Front Mol Biosci. 2025 Jan 23;11:1487115. doi: 10.3389/fmolb.2024.1487115. eCollection 2024.
5
Exfoliation syndrome genetics in the era of post-GWAS.
Vision Res. 2025 Jan;226:108518. doi: 10.1016/j.visres.2024.108518. Epub 2024 Nov 16.
6
Effects of Aging on Intrinsic Protein Disorder in Human Lenses and Zonules.
Cell Biochem Biophys. 2024 Dec;82(4):3667-3679. doi: 10.1007/s12013-024-01455-x. Epub 2024 Aug 8.
7
Exfoliation syndrome and exfoliation glaucoma: Current perspectives and clinical paradigms.
Indian J Ophthalmol. 2024 Jul 1;72(7):938-944. doi: 10.4103/IJO.IJO_2653_23. Epub 2024 Jun 22.
8
Risk factors for exfoliation glaucoma - Current evidence and perspectives.
Indian J Ophthalmol. 2024 Jul 1;72(Suppl 4):S562-S567. doi: 10.4103/IJO.IJO_2685_23. Epub 2024 May 20.
9
Comparative Proteomic Analysis of the Aqueous Humor from Patients with Pseudoexfoliation Syndrome.
J Curr Glaucoma Pract. 2023 Jul-Sep;17(3):118-125. doi: 10.5005/jp-journals-10078-1411.
10
Comparison of clinical outcomes between gonioscopy-assisted transluminal trabeculotomy and trabeculectomy in advanced-stage pseudoexfoliation glaucoma.
Graefes Arch Clin Exp Ophthalmol. 2024 Feb;262(2):567-574. doi: 10.1007/s00417-023-06246-3. Epub 2023 Oct 7.

本文引用的文献

2
Ocular pseudoexfoliation syndrome and vascular disease: a systematic review and meta-analysis.
PLoS One. 2014 Mar 25;9(3):e92767. doi: 10.1371/journal.pone.0092767. eCollection 2014.
3
Pseudoexfoliation syndrome and coronary artery ectasia.
Eye (Lond). 2014 May;28(5):594-9. doi: 10.1038/eye.2014.40. Epub 2014 Mar 7.
4
The microfibril hypothesis of glaucoma: implications for treatment of elevated intraocular pressure.
J Ocul Pharmacol Ther. 2014 Mar-Apr;30(2-3):170-80. doi: 10.1089/jop.2013.0184. Epub 2014 Feb 12.
5
Disruption of the blood-aqueous barrier and lens abnormalities in mice lacking lysyl oxidase-like 1 (LOXL1).
Invest Ophthalmol Vis Sci. 2014 Feb 10;55(2):856-64. doi: 10.1167/iovs.13-13033.
6
Comparative proteomic study in serum of patients with primary open-angle glaucoma and pseudoexfoliation glaucoma.
J Proteomics. 2014 Feb 26;98:65-78. doi: 10.1016/j.jprot.2013.12.006. Epub 2013 Dec 16.
7
Review: The role of LOXL1 in exfoliation syndrome/glaucoma.
Saudi J Ophthalmol. 2011 Oct;25(4):347-52. doi: 10.1016/j.sjopt.2011.07.001. Epub 2011 Jul 27.
8
Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice.
J Neuroinflammation. 2013 Jun 27;10:76. doi: 10.1186/1742-2094-10-76.
9
Sources of structural autofluorescence in the human trabecular meshwork.
Invest Ophthalmol Vis Sci. 2013 Jul 18;54(7):4813-20. doi: 10.1167/iovs.12-11235.
10
Systemic arterial stiffness in patients with pseudoexfoliation glaucoma.
J Glaucoma. 2014 Feb;23(2):e108-11. doi: 10.1097/IJG.0b013e3182955d58.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验