Hoffmann K P
Prog Brain Res. 1989;80:173-82; discussion 171-2. doi: 10.1016/s0079-6123(08)62211-6.
Physiological and anatomical experiments clearly established the existence of a pretectal relay of visual information to the ipsilateral inferior olive in the macaque monkey. Horseradish peroxidase injected into the inferior olivary nucleus retrogradely labelled neurons in the nucleus of the optic tract (NOT) and the dorsal terminal nucleus of the accessory optic tract (DTN). The response characteristics of NOT-DTN neurones are described in this chapter. The visual receptive fields of neurones in NOT and DTN in anaesthetized and paralysed macaque monkeys prefer horizontal ipsiversive movements of single objects or whole field random dot patterns, i.e. neurones in the left NOT-DTN prefer leftward movements and vice versa. The directional tuning widths of NOT-DTN neurones are very broad. Directions withing a mean range of 127 +/- 25 degrees visual angle elicit response strengths greater than 50% of the maximal response. Visual latencies to reversals in directions of stimulus movement are in a range from 40 to 80 ms (mean 61 +/- 13 ms). Combining two visual stimuli by moving a random dot pattern and a single bar of light simultaneously but in opposite directions causes NOT-DTN neurones to respond to each stimulus as soon as it moves in the cell's preferred direction. The reduced overall response strengths indicate additional inhibitory interactions. All NOT-DTN neurones can be activated from each eye. Interactions between the two eyes are modest and unspecific. Optical speeds of stimulus movement vary for different NOT-DTN neurones (4-60 deg/s). The effective range of speeds is broad (0.1-400 deg/s for the total population). With oscillating horizontal stimulation NOT-DTN neurones follow repetition rates up to 4 Hz. Receptive fields are mostly large (20-40 degrees visual angle), include the fovea, and extend up to 20 degrees into the ipsilateral hemifield. The sensitivity to moving stimuli is highest near the fovea. Our results thus indicate that direction selective cells in the NOT and DTN have all the properties and connections which are necessary and sufficient to control the stability of the image on the retina by supplying retinal slip information to the velocity storage integrator in the brainstem (Raphan et al., 1979).
生理学和解剖学实验清楚地证实了猕猴中存在视觉信息向同侧下橄榄核的顶盖前中继。将辣根过氧化物酶注入下橄榄核,逆向标记了视束核(NOT)和副视束背侧终末核(DTN)中的神经元。本章描述了NOT-DTN神经元的反应特性。在麻醉和麻痹的猕猴中,NOT和DTN神经元的视觉感受野偏好单个物体或全场随机点图案的水平同侧运动,即左NOT-DTN中的神经元偏好向左运动,反之亦然。NOT-DTN神经元的方向调谐宽度非常宽。在平均127±25度视角范围内的方向引发的反应强度大于最大反应的50%。刺激运动方向反转的视觉潜伏期在40至80毫秒范围内(平均61±13毫秒)。通过同时但沿相反方向移动随机点图案和单根光条来组合两个视觉刺激,会使NOT-DTN神经元在每个刺激向细胞偏好方向移动时立即做出反应。整体反应强度的降低表明存在额外的抑制性相互作用。所有NOT-DTN神经元都可以被每只眼睛激活。两只眼睛之间的相互作用适度且不具特异性。不同NOT-DTN神经元的刺激运动光学速度不同(4-60度/秒)。速度的有效范围很宽(总体为0.1-400度/秒)。在水平振荡刺激下,NOT-DTN神经元能跟随高达4赫兹的重复率。感受野大多较大(20-40度视角),包括中央凹,并延伸到同侧半视野达20度。对移动刺激的敏感性在中央凹附近最高。因此,我们的结果表明,NOT和DTN中的方向选择性细胞具有所有必要且充分的特性和连接,通过向脑干中的速度存储积分器提供视网膜滑动信息来控制视网膜上图像的稳定性(Raphan等人,1979年)。