文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

亚抽样开放参考聚类创建一致的、全面的 OTU 定义,并可扩展到数十亿个序列。

Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences.

机构信息

Center for Microbial Genetics and Genomics, Northern Arizona University , Flagstaff, AZ , USA ; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai , New York, NY , USA.

State Key Laboratory of Organ Failure Prevention, and Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou, Guangdong , China.

出版信息

PeerJ. 2014 Aug 21;2:e545. doi: 10.7717/peerj.545. eCollection 2014.


DOI:10.7717/peerj.545
PMID:25177538
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4145071/
Abstract

We present a performance-optimized algorithm, subsampled open-reference OTU picking, for assigning marker gene (e.g., 16S rRNA) sequences generated on next-generation sequencing platforms to operational taxonomic units (OTUs) for microbial community analysis. This algorithm provides benefits over de novo OTU picking (clustering can be performed largely in parallel, reducing runtime) and closed-reference OTU picking (all reads are clustered, not only those that match a reference database sequence with high similarity). Because more of our algorithm can be run in parallel relative to "classic" open-reference OTU picking, it makes open-reference OTU picking tractable on massive amplicon sequence data sets (though on smaller data sets, "classic" open-reference OTU clustering is often faster). We illustrate that here by applying it to the first 15,000 samples sequenced for the Earth Microbiome Project (1.3 billion V4 16S rRNA amplicons). To the best of our knowledge, this is the largest OTU picking run ever performed, and we estimate that our new algorithm runs in less than 1/5 the time than would be required of "classic" open reference OTU picking. We show that subsampled open-reference OTU picking yields results that are highly correlated with those generated by "classic" open-reference OTU picking through comparisons on three well-studied datasets. An implementation of this algorithm is provided in the popular QIIME software package, which uses uclust for read clustering. All analyses were performed using QIIME's uclust wrappers, though we provide details (aided by the open-source code in our GitHub repository) that will allow implementation of subsampled open-reference OTU picking independently of QIIME (e.g., in a compiled programming language, where runtimes should be further reduced). Our analyses should generalize to other implementations of these OTU picking algorithms. Finally, we present a comparison of parameter settings in QIIME's OTU picking workflows and make recommendations on settings for these free parameters to optimize runtime without reducing the quality of the results. These optimized parameters can vastly decrease the runtime of uclust-based OTU picking in QIIME.

摘要

我们提出了一种性能优化的算法,即亚采样开放式参考 OTU 挑选,用于将下一代测序平台上生成的标记基因(例如 16S rRNA)序列分配给微生物群落分析的操作分类单元 (OTUs)。与从头聚类 OTU 挑选(聚类可以很大程度上并行进行,减少运行时间)和封闭式参考 OTU 挑选(所有读取的序列都进行聚类,而不仅仅是那些与高相似度的参考数据库序列匹配的序列)相比,该算法具有优势。由于与“经典”开放式参考 OTU 聚类相比,我们的算法可以更多地并行运行,因此它使开放式参考 OTU 聚类在大规模扩增子序列数据集上变得可行(尽管在较小的数据集上,“经典”开放式参考 OTU 聚类通常更快)。我们通过将其应用于地球微生物组计划 (EMP) 中测序的前 15000 个样本(13 亿个 V4 16S rRNA 扩增子)来说明这一点。据我们所知,这是迄今为止进行的最大的 OTU 挑选运行,我们估计我们的新算法的运行时间不到“经典”开放式参考 OTU 挑选所需时间的 1/5。我们通过在三个经过充分研究的数据集上进行比较,表明亚采样开放式参考 OTU 挑选产生的结果与“经典”开放式参考 OTU 挑选产生的结果高度相关。该算法的实现提供在流行的 QIIME 软件包中,该软件包使用 uclust 进行读取聚类。所有分析均使用 QIIME 的 uclust 包装器进行,尽管我们提供了详细信息(借助我们在 GitHub 存储库中的开源代码),这些信息将允许在不依赖于 QIIME 的情况下独立实现亚采样开放式参考 OTU 挑选(例如,在编译编程语言中,运行时间应该进一步缩短)。我们的分析应该适用于这些 OTU 挑选算法的其他实现。最后,我们比较了 QIIME 的 OTU 挑选工作流程中的参数设置,并针对这些自由参数提出了设置建议,以优化运行时间而不降低结果的质量。这些优化的参数可以大大缩短 QIIME 中基于 uclust 的 OTU 挑选的运行时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c2/4145071/1bf63898bb33/peerj-02-545-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c2/4145071/436b13c2f852/peerj-02-545-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c2/4145071/1bf63898bb33/peerj-02-545-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c2/4145071/436b13c2f852/peerj-02-545-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c2/4145071/1bf63898bb33/peerj-02-545-g002.jpg

相似文献

[1]
Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences.

PeerJ. 2014-8-21

[2]
De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units.

PeerJ. 2015-12-8

[3]
OptiFit: an Improved Method for Fitting Amplicon Sequences to Existing OTUs.

mSphere. 2022-2-23

[4]
A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.

BMC Microbiol. 2017-9-13

[5]
OTUX: V-region specific OTU database for improved 16S rRNA OTU picking and efficient cross-study taxonomic comparison of microbiomes.

DNA Res. 2019-4-1

[6]
Application of a Database-Independent Approach To Assess the Quality of Operational Taxonomic Unit Picking Methods.

mSystems. 2016-4-26

[7]
Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering.

Microbiome. 2015-10-5

[8]
Evaluating the accuracy of amplicon-based microbiome computational pipelines on simulated human gut microbial communities.

BMC Bioinformatics. 2017-5-30

[9]
Accuracy of microbial community diversity estimated by closed- and open-reference OTUs.

PeerJ. 2017-10-4

[10]
OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units.

mSphere. 2017-3-8

引用本文的文献

[1]
Total mixed ration enhances nutrient digestibility, blood biochemical parameters and faecal microbial diversity in horses.

BMC Vet Res. 2025-7-23

[2]
Distinct Intraspecies Variation of and in Acne Vulgaris and Healthy Skin.

Microorganisms. 2025-1-29

[3]
Mycobiome analysis of leaf, root, and soil of symptomatic oil palm trees ( Jacq.) affected by leaf spot disease.

Front Microbiol. 2024-12-6

[4]
Predicting how varying moisture conditions impact the microbiome of dust collected from the International Space Station.

Microbiome. 2024-9-10

[5]
Exploring the impact of urban pollution on ciliate diversity along the Sapucaí River (Minas Gerais, Brazil) via DNA metabarcoding.

Mol Biol Rep. 2024-9-9

[6]
Perturbations to common gardens of anaerobic co-digesters reveal relationships between functional resilience and microbial community composition.

Appl Environ Microbiol. 2024-9-18

[7]
Ciliate diversity in rodrigo de freitas lagoon (Rio de Janeiro, Brazil) from an integrative standpoint.

Braz J Microbiol. 2024-6

[8]
The gut mucin-microbiota interactions: a missing key to optimizing endurance performance.

Front Physiol. 2023-11-22

[9]
MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies.

Cell Rep Methods. 2023-11-20

[10]
Yearly variation coupled with social interactions shape the skin microbiome in free-ranging rhesus macaques.

Microbiol Spectr. 2023-9-26

本文引用的文献

[1]
Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data.

Methods Ecol Evol. 2013-12-1

[2]
Advancing our understanding of the human microbiome using QIIME.

Methods Enzymol. 2013

[3]
The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome.

Gigascience. 2012-7-12

[4]
Human gut microbiome viewed across age and geography.

Nature. 2012-5-9

[5]
An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.

ISME J. 2011-12-1

[6]
Moving pictures of the human microbiome.

Genome Biol. 2011

[7]
Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis.

Appl Environ Microbiol. 2011-3-18

[8]
Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project.

Stand Genomic Sci. 2010-12-25

[9]
Search and clustering orders of magnitude faster than BLAST.

Bioinformatics. 2010-8-12

[10]
QIIME allows analysis of high-throughput community sequencing data.

Nat Methods. 2010-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索