Suppr超能文献

不可逆可卡因类似物RTI 82的计算和生化对接直接证明了配体在多巴胺转运体中央底物结合位点的定位。

Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site.

作者信息

Dahal Rejwi Acharya, Pramod Akula Bala, Sharma Babita, Krout Danielle, Foster James D, Cha Joo Hwan, Cao Jianjing, Newman Amy Hauck, Lever John R, Vaughan Roxanne A, Henry L Keith

机构信息

From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203.

the Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224.

出版信息

J Biol Chem. 2014 Oct 24;289(43):29712-27. doi: 10.1074/jbc.M114.571521. Epub 2014 Aug 31.

Abstract

The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors.

摘要

多巴胺转运体(DAT)通过再摄取突触多巴胺(DA),发挥多巴胺能神经传递关键调节因子的作用。可卡因与DAT结合会阻断这一活性,并提高细胞外DA水平,从而导致精神运动性兴奋和成瘾,但可卡因与DAT相互作用并抑制转运的机制仍未完全明确。在此,我们运用计算和生化方法,确定光活化不可逆可卡因类似物3β-(对氯苯基)托烷-2β-羧酸4'-叠氮基-3'-碘苯乙酯([(125)I]RTI 82)的结合位点和加合位点,以解决这些问题。比较建模和小分子对接表明,RTI 82的托烷药效基团位于中央DA活性位点,其取向使芳基碘叠氮基团并列,以便与大鼠DAT的苯丙氨酸-319交联。通过对该位点侧翼残基进行定点甲硫氨酸取代,随后对[(125)I]RTI 82标记的突变体进行溴化氰图谱分析,以及通过取代半胱氨酸可及性方法保护分析,验证了这一预测。这些发现提供了将托烷药效基团相互作用与核心底物结合位点联系起来的积极功能证据,并支持转运抑制的竞争机制。计算和生化方法的这种协同应用克服了其他方法固有的许多不确定性,并为阐明其他类DA转运抑制剂的配体-蛋白质相互作用提供了一个示意性框架。

相似文献

4
Localization of cocaine analog [125I]RTI 82 irreversible binding to transmembrane domain 6 of the dopamine transporter.
J Biol Chem. 2007 Mar 23;282(12):8915-25. doi: 10.1074/jbc.M610633200. Epub 2007 Jan 25.
5
Differential binding of tropane-based photoaffinity ligands on the dopamine transporter.
J Neurosci. 1999 Jan 15;19(2):630-6. doi: 10.1523/JNEUROSCI.19-02-00630.1999.
6
Identification of the benztropine analog [I]GA II 34 binding site on the human dopamine transporter.
Neurochem Int. 2019 Feb;123:34-45. doi: 10.1016/j.neuint.2018.08.008. Epub 2018 Aug 17.
7
Interaction of tyrosine 151 in norepinephrine transporter with the 2β group of cocaine analog RTI-113.
Neuropharmacology. 2011 Jul-Aug;61(1-2):112-20. doi: 10.1016/j.neuropharm.2011.03.014. Epub 2011 Mar 21.
8
Novel tropane-based irreversible ligands for the dopamine transporter.
J Med Chem. 2001 Dec 6;44(25):4453-61. doi: 10.1021/jm0101904.
10
Functional properties of dopamine transporter oligomers after copper linking.
J Neurochem. 2018 Jan;144(2):162-171. doi: 10.1111/jnc.14259. Epub 2017 Dec 21.

引用本文的文献

2
Overview of the structure and function of the dopamine transporter and its protein interactions.
Front Physiol. 2023 Mar 3;14:1150355. doi: 10.3389/fphys.2023.1150355. eCollection 2023.
3
Identification of a Novel Allosteric Modulator of the Human Dopamine Transporter.
ACS Chem Neurosci. 2019 Aug 21;10(8):3718-3730. doi: 10.1021/acschemneuro.9b00262. Epub 2019 Jun 24.
4
Model systems for analysis of dopamine transporter function and regulation.
Neurochem Int. 2019 Feb;123:13-21. doi: 10.1016/j.neuint.2018.08.015. Epub 2018 Sep 1.
5
Identification of the benztropine analog [I]GA II 34 binding site on the human dopamine transporter.
Neurochem Int. 2019 Feb;123:34-45. doi: 10.1016/j.neuint.2018.08.008. Epub 2018 Aug 17.
7
Palmitoylation mechanisms in dopamine transporter regulation.
J Chem Neuroanat. 2017 Oct;83-84:3-9. doi: 10.1016/j.jchemneu.2017.01.002. Epub 2017 Jan 20.
8
Phosphorylation mechanisms in dopamine transporter regulation.
J Chem Neuroanat. 2017 Oct;83-84:10-18. doi: 10.1016/j.jchemneu.2016.10.004. Epub 2016 Nov 9.
10
Rapid and sustained antidepressant properties of an NMDA antagonist/monoamine reuptake inhibitor identified via transporter-based virtual screening.
Pharmacol Biochem Behav. 2016 Nov-Dec;150-151:22-30. doi: 10.1016/j.pbb.2016.08.007. Epub 2016 Aug 26.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport.
J Biol Chem. 2014 Jan 17;289(3):1825-40. doi: 10.1074/jbc.M113.504654. Epub 2013 Nov 29.
4
Structural basis for action by diverse antidepressants on biogenic amine transporters.
Nature. 2013 Nov 7;503(7474):141-5. doi: 10.1038/nature12648. Epub 2013 Oct 13.
5
X-ray structure of dopamine transporter elucidates antidepressant mechanism.
Nature. 2013 Nov 7;503(7474):85-90. doi: 10.1038/nature12533. Epub 2013 Sep 15.
6
The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders.
Psychopharmacology (Berl). 2013 Oct;229(3):415-34. doi: 10.1007/s00213-013-3232-4. Epub 2013 Aug 10.
7
Small-molecule ligand docking into comparative models with Rosetta.
Nat Protoc. 2013;8(7):1277-98. doi: 10.1038/nprot.2013.074. Epub 2013 Jun 6.
9
Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates.
J Pharmacol Exp Ther. 2013 Jul;346(1):2-10. doi: 10.1124/jpet.111.191056. Epub 2013 Apr 8.
10
SLC6 transporters: structure, function, regulation, disease association and therapeutics.
Mol Aspects Med. 2013 Apr-Jun;34(2-3):197-219. doi: 10.1016/j.mam.2012.07.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验