Dahal Rejwi Acharya, Pramod Akula Bala, Sharma Babita, Krout Danielle, Foster James D, Cha Joo Hwan, Cao Jianjing, Newman Amy Hauck, Lever John R, Vaughan Roxanne A, Henry L Keith
From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203.
the Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224.
J Biol Chem. 2014 Oct 24;289(43):29712-27. doi: 10.1074/jbc.M114.571521. Epub 2014 Aug 31.
The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors.
多巴胺转运体(DAT)通过再摄取突触多巴胺(DA),发挥多巴胺能神经传递关键调节因子的作用。可卡因与DAT结合会阻断这一活性,并提高细胞外DA水平,从而导致精神运动性兴奋和成瘾,但可卡因与DAT相互作用并抑制转运的机制仍未完全明确。在此,我们运用计算和生化方法,确定光活化不可逆可卡因类似物3β-(对氯苯基)托烷-2β-羧酸4'-叠氮基-3'-碘苯乙酯([(125)I]RTI 82)的结合位点和加合位点,以解决这些问题。比较建模和小分子对接表明,RTI 82的托烷药效基团位于中央DA活性位点,其取向使芳基碘叠氮基团并列,以便与大鼠DAT的苯丙氨酸-319交联。通过对该位点侧翼残基进行定点甲硫氨酸取代,随后对[(125)I]RTI 82标记的突变体进行溴化氰图谱分析,以及通过取代半胱氨酸可及性方法保护分析,验证了这一预测。这些发现提供了将托烷药效基团相互作用与核心底物结合位点联系起来的积极功能证据,并支持转运抑制的竞争机制。计算和生化方法的这种协同应用克服了其他方法固有的许多不确定性,并为阐明其他类DA转运抑制剂的配体-蛋白质相互作用提供了一个示意性框架。