Suppr超能文献

保守寡聚高尔基体复合体成分的靶向沉默会损害HIV-1复制。

Target silencing of components of the conserved oligomeric Golgi complex impairs HIV-1 replication.

作者信息

Liu Sicen, Dominska-Ngowe Monika, Dykxhoorn Derek Michael

机构信息

John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, United States.

出版信息

Virus Res. 2014 Nov 4;192:92-102. doi: 10.1016/j.virusres.2014.08.015. Epub 2014 Aug 30.

Abstract

All viruses require host cell factors to replicate. A large number of host factors have been identified that participate at numerous points of the human immunodeficiency virus 1 (HIV-1) life cycle. Recent evidence supports a role for components of the trans-Golgi network (TGN) in mediating early steps in the HIV-1 life cycle. The conserved oligomeric Golgi (COG) complex is a heteroctamer complex that functions in coat protein complex I (COPI)-mediated intra-Golgi retrograde trafficking and plays an important role in the maintenance of Golgi structure and integrity as well as glycosylation enzyme homeostasis. The targeted silencing of components of lobe B of the COG complex, namely COG5, COG6, COG7 and COG8, inhibited HIV-1 replication. This inhibition of HIV-1 replication preceded late reverse transcription (RT) but did not affect viral fusion. Silencing of the COG interacting protein the t-SNARE syntaxin 5, showed a similar defect in late RT product formation, strengthening the role of the TGN in HIV replication.

摘要

所有病毒都需要宿主细胞因子来进行复制。现已鉴定出大量宿主因子,它们参与人类免疫缺陷病毒1(HIV-1)生命周期的多个环节。最近的证据支持反式高尔基体网络(TGN)的组分在介导HIV-1生命周期早期步骤中发挥作用。保守寡聚高尔基体(COG)复合体是一种异八聚体复合体,在衣被蛋白复合体I(COPI)介导的高尔基体内逆行转运中发挥作用,并且在维持高尔基体结构和完整性以及糖基化酶稳态方面发挥重要作用。COG复合体B叶组分,即COG5、COG6、COG7和COG8的靶向沉默抑制了HIV-1复制。这种对HIV-1复制的抑制发生在逆转录(RT)后期之前,但不影响病毒融合。COG相互作用蛋白t-SNARE syntaxin 5的沉默在RT晚期产物形成中表现出类似的缺陷,强化了TGN在HIV复制中的作用。

相似文献

1
Target silencing of components of the conserved oligomeric Golgi complex impairs HIV-1 replication.
Virus Res. 2014 Nov 4;192:92-102. doi: 10.1016/j.virusres.2014.08.015. Epub 2014 Aug 30.
4
Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway.
Cell Microbiol. 2012 May;14(5):656-68. doi: 10.1111/j.1462-5822.2012.01747.x. Epub 2012 Feb 15.
5
COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity.
Traffic. 2013 Feb;14(2):194-204. doi: 10.1111/tra.12020. Epub 2012 Nov 12.
6
Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation.
Carbohydr Res. 2008 Aug 11;343(12):2024-31. doi: 10.1016/j.carres.2008.01.034. Epub 2008 Feb 2.
7
Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery.
Glycobiology. 2011 Dec;21(12):1554-69. doi: 10.1093/glycob/cwr028. Epub 2011 Mar 18.
8
The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin.
Traffic. 2009 Oct;10(10):1502-17. doi: 10.1111/j.1600-0854.2009.00965.x. Epub 2009 Jul 21.
9
The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport.
J Cell Biol. 2011 Aug 8;194(3):459-72. doi: 10.1083/jcb.201102045. Epub 2011 Aug 1.

引用本文的文献

1
Identification of Biomarkers Associated With CD4 T-Cell Infiltration With Gene Coexpression Network in Dermatomyositis.
Front Immunol. 2022 May 30;13:854848. doi: 10.3389/fimmu.2022.854848. eCollection 2022.
2
MicroRNA Profile of MA-104 Cell Line Associated With the Pathogenesis of Bovine Rotavirus Strain Circulated in Chinese Calves.
Front Microbiol. 2022 Apr 11;13:854348. doi: 10.3389/fmicb.2022.854348. eCollection 2022.
3
Where all the Roads Meet? A Crossover Perspective on Host Factors Regulating SARS-CoV-2 infection.
J Mol Biol. 2022 Mar 15;434(5):167403. doi: 10.1016/j.jmb.2021.167403. Epub 2021 Dec 13.
4
Functional single-cell genomics of human cytomegalovirus infection.
Nat Biotechnol. 2022 Mar;40(3):391-401. doi: 10.1038/s41587-021-01059-3. Epub 2021 Oct 25.
5
Golgi inCOGnito: From vesicle tethering to human disease.
Biochim Biophys Acta Gen Subj. 2020 Nov;1864(11):129694. doi: 10.1016/j.bbagen.2020.129694. Epub 2020 Jul 27.
7
Maintaining order: COG complex controls Golgi trafficking, processing, and sorting.
FEBS Lett. 2019 Sep;593(17):2466-2487. doi: 10.1002/1873-3468.13570. Epub 2019 Aug 16.
8
Assembly-hub function of ER-localized SNARE proteins in biogenesis of tombusvirus replication compartment.
PLoS Pathog. 2018 May 10;14(5):e1007028. doi: 10.1371/journal.ppat.1007028. eCollection 2018 May.
9
A Brucella Type IV Effector Targets the COG Tethering Complex to Remodel Host Secretory Traffic and Promote Intracellular Replication.
Cell Host Microbe. 2017 Sep 13;22(3):317-329.e7. doi: 10.1016/j.chom.2017.07.017. Epub 2017 Aug 24.

本文引用的文献

1
Past, present and future: 30 years of HIV research.
Nat Rev Microbiol. 2013 Dec;11(12):877-83. doi: 10.1038/nrmicro3132. Epub 2013 Oct 28.
3
The Golgi puppet master: COG complex at center stage of membrane trafficking interactions.
Histochem Cell Biol. 2013 Sep;140(3):271-83. doi: 10.1007/s00418-013-1117-6. Epub 2013 Jul 10.
4
COG complexes form spatial landmarks for distinct SNARE complexes.
Nat Commun. 2013;4:1553. doi: 10.1038/ncomms2535.
5
6
Virus assembly and plasma membrane domains: which came first?
Virus Res. 2013 Feb;171(2):332-40. doi: 10.1016/j.virusres.2012.08.014. Epub 2012 Sep 16.
7
Re'COG'nition at the Golgi.
Traffic. 2012 Jul;13(7):891-7. doi: 10.1111/j.1600-0854.2012.01338.x. Epub 2012 Feb 27.
8
Knockdown of MAP4 and DNAL1 produces a post-fusion and pre-nuclear translocation impairment in HIV-1 replication.
Virology. 2012 Jan 5;422(1):13-21. doi: 10.1016/j.virol.2011.09.015. Epub 2011 Oct 22.
9
Host factors mediating HIV-1 replication.
Virus Res. 2011 Nov;161(2):101-14. doi: 10.1016/j.virusres.2011.08.001. Epub 2011 Aug 18.
10
New insights into HIV assembly and trafficking.
Physiology (Bethesda). 2011 Aug;26(4):236-51. doi: 10.1152/physiol.00051.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验