Suppr超能文献

母体饮食诱导的微小RNA和mTOR是子代β细胞功能障碍的基础。

Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring.

作者信息

Alejandro Emilyn U, Gregg Brigid, Wallen Taylor, Kumusoglu Doga, Meister Daniel, Chen Angela, Merrins Matthew J, Satin Leslie S, Liu Ming, Arvan Peter, Bernal-Mizrachi Ernesto

出版信息

J Clin Invest. 2014 Oct;124(10):4395-410. doi: 10.1172/JCI74237. Epub 2014 Sep 2.

Abstract

A maternal diet that is low in protein increases the susceptibility of offspring to type 2 diabetes by inducing long-term alterations in β cell mass and function. Nutrients and growth factor signaling converge through mTOR, suggesting that this pathway participates in β cell programming during fetal development. Here, we revealed that newborns of dams exposed to low-protein diet (LP0.5) throughout pregnancy exhibited decreased insulin levels, a lower β cell fraction, and reduced mTOR signaling. Adult offspring of LP0.5-exposed mothers exhibited glucose intolerance as a result of an insulin secretory defect and not β cell mass reduction. The β cell insulin secretory defect was distal to glucose-dependent Ca2+ influx and resulted from reduced proinsulin biosynthesis and insulin content. Islets from offspring of LP0.5-fed dams exhibited reduced mTOR and increased expression of a subset of microRNAs, and blockade of microRNA-199a-3p and -342 in these islets restored mTOR and insulin secretion to normal. Finally, transient β cell activation of mTORC1 signaling in offspring during the last week of pregnancy of mothers fed a LP0.5 rescued the defect in the neonatal β cell fraction and metabolic abnormalities in the adult. Together, these findings indicate that a maternal low-protein diet alters microRNA and mTOR expression in the offspring, influencing insulin secretion and glucose homeostasis.

摘要

蛋白质含量低的母体饮食会通过诱导β细胞数量和功能的长期改变,增加后代患2型糖尿病的易感性。营养物质和生长因子信号通过mTOR汇聚,这表明该通路参与胎儿发育期间的β细胞编程。在此,我们发现整个孕期暴露于低蛋白饮食(LP0.5)的母鼠所产新生鼠胰岛素水平降低、β细胞比例降低且mTOR信号传导减弱。LP0.5暴露组母亲的成年后代因胰岛素分泌缺陷而非β细胞数量减少而出现葡萄糖不耐受。β细胞胰岛素分泌缺陷发生在葡萄糖依赖性Ca2+内流之后,是由胰岛素原生物合成减少和胰岛素含量降低所致。LP0.5喂养组母鼠后代的胰岛mTOR降低,且一部分微小RNA的表达增加,而在这些胰岛中阻断微小RNA-199a-3p和-342可使mTOR和胰岛素分泌恢复正常。最后,在孕期最后一周给母鼠喂食LP0.5的情况下,对其后代的β细胞进行短暂的mTORC1信号激活,可挽救新生鼠β细胞比例缺陷和成年鼠的代谢异常。这些研究结果共同表明,母体低蛋白饮食会改变后代的微小RNA和mTOR表达,影响胰岛素分泌和葡萄糖稳态。

相似文献

1
Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring.
J Clin Invest. 2014 Oct;124(10):4395-410. doi: 10.1172/JCI74237. Epub 2014 Sep 2.
2
Maternal low-protein diet on the last week of pregnancy contributes to insulin resistance and β-cell dysfunction in the mouse offspring.
Am J Physiol Regul Integr Comp Physiol. 2020 Oct 1;319(4):R485-R496. doi: 10.1152/ajpregu.00284.2019. Epub 2020 Sep 2.
4
Maternal High-Fat Diet During Pre-Conception and Gestation Predisposes Adult Female Offspring to Metabolic Dysfunction in Mice.
Front Endocrinol (Lausanne). 2022 Jan 17;12:780300. doi: 10.3389/fendo.2021.780300. eCollection 2021.
6
A maternal low-protein diet impaired glucose metabolism and altered the lncRNA profiles of islets in adult offspring.
J Nutr Biochem. 2024 Jun;128:109618. doi: 10.1016/j.jnutbio.2024.109618. Epub 2024 Mar 10.
7
8
Maternal Low Protein Isocaloric Diet Suppresses Pancreatic β-Cell Proliferation in Mouse Offspring via miR-15b.
Endocrinology. 2016 Dec;157(12):4782-4793. doi: 10.1210/en.2016-1167. Epub 2016 Oct 18.

引用本文的文献

1
Placental mitochondrial calcium uniporter modulates offspring susceptibility to metabolic dysfunction.
Mol Metab. 2025 Oct;100:102236. doi: 10.1016/j.molmet.2025.102236. Epub 2025 Aug 21.
2
Metabolic syndrome in children and adolescents: definitions, epidemiology, pathophysiology, interventions, and challenges.
Front Endocrinol (Lausanne). 2025 Jun 11;16:1512642. doi: 10.3389/fendo.2025.1512642. eCollection 2025.
3
Lack of maternal exposure to somatostatin leads to diet-induced insulin and leptin resistance in mouse male offspring.
J Mol Endocrinol. 2025 Mar 22;74(4). doi: 10.1530/JME-24-0102. Print 2025 May 1.
6
Loss of O-GlcNAcylation modulates mTORC1 and autophagy in β cells, driving diabetes 2 progression.
JCI Insight. 2024 Dec 6;9(23):e183033. doi: 10.1172/jci.insight.183033.
7
Sweet Spot Regulation of Maternal Metabolic Health and Nutrition on β-Cell Mass in the Offspring.
Adv Anat Embryol Cell Biol. 2024;239:157-197. doi: 10.1007/978-3-031-62232-8_7.
10
Sex Differences in Pancreatic β-Cell Physiology and Glucose Homeostasis in C57BL/6J Mice.
J Endocr Soc. 2023 Jul 25;7(9):bvad099. doi: 10.1210/jendso/bvad099. eCollection 2023 Aug 2.

本文引用的文献

1
MicroRNA-7a regulates pancreatic β cell function.
J Clin Invest. 2014 Jun;124(6):2722-35. doi: 10.1172/JCI73066. Epub 2014 May 1.
3
Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet β cells.
Exp Mol Med. 2013 Aug 23;45(8):e37. doi: 10.1038/emm.2013.73.
4
MicroRNA-199a-3p regulates endometrial cancer cell proliferation by targeting mammalian target of rapamycin (mTOR).
Int J Gynecol Cancer. 2013 Sep;23(7):1191-7. doi: 10.1097/IGC.0b013e31829ea779.
5
Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes.
Cell Mol Life Sci. 2013 May;70(9):1575-95. doi: 10.1007/s00018-013-1297-1. Epub 2013 Mar 6.
6
mTORC2 controls actin polymerization required for consolidation of long-term memory.
Nat Neurosci. 2013 Apr;16(4):441-8. doi: 10.1038/nn.3351. Epub 2013 Mar 3.
7
MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells.
Diabetes. 2013 Mar;62(3):887-95. doi: 10.2337/db12-0451. Epub 2012 Dec 6.
9
Regulation of pancreatic microRNA-7 expression.
Exp Diabetes Res. 2012;2012:695214. doi: 10.1155/2012/695214. Epub 2012 May 17.
10
mTORC1 signaling and regulation of pancreatic β-cell mass.
Cell Cycle. 2012 May 15;11(10):1892-902. doi: 10.4161/cc.20036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验