Moon Hyojin, Lee Jisu, Min Junseon, Kang Sebyung
Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea.
Biomacromolecules. 2014 Oct 13;15(10):3794-801. doi: 10.1021/bm501066m. Epub 2014 Sep 11.
Protein cage nanoparticles are excellent candidates for use as multifunctional delivery nanoplatforms because they are built from biomaterials and have a well-defined structure. A novel protein cage nanoparticle, encapsulin, isolated from thermophilic bacteria Thermotoga maritima, is prepared and developed as a versatile template for targeted delivery nanoplatforms through both chemical and genetic engineering. It is pivotal for multifunctional delivery nanoplatforms to have functional plasticity and versatility to acquire targeting ligands, diagnostic probes, and drugs simultaneously. Encapsulin is genetically engineered to have unusual heat stability and to acquire multiple functionalities in a precisely controlled manner. Hepatocellular carcinoma (HCC) cell binding peptide (SP94-peptide, SFSIIHTPILPL) is chosen as a targeting ligand and displayed on the surface of engineered encapsulin (Encap_loophis42C123) through either chemical conjugation or genetic insertion. The effective and selective targeted delivery of SP94-peptide displaying encapsulin (SP94-Encap_loophis42C123) to HepG2 cells is confirmed by fluorescent microscopy imaging. Aldoxorubicin (AlDox), an anticancer prodrug, is chemically loaded to SP94-Encap_loophis42C123 via thiol-maleimide Michael-type addition, and the efficacy of the delivered drugs is evaluated with a cell viability assay. SP94-Encap_loophis42C123-AlDox shows comparable killing efficacy with that of free drugs without the platform's own cytotoxicity. Functional plasticity and versatility of the engineered encapsulin allow us to introduce targeting ligands, diagnostic probes, and therapeutic reagents simultaneously, providing opportunities to develop multifunctional delivery nanoplatforms.
蛋白质笼状纳米颗粒是用作多功能递送纳米平台的极佳候选者,因为它们由生物材料构建而成且具有明确的结构。一种从嗜热细菌海栖热袍菌中分离出的新型蛋白质笼状纳米颗粒——封装菌素,通过化学和基因工程制备并开发成为用于靶向递送纳米平台的通用模板。多功能递送纳米平台具有功能可塑性和通用性以同时获取靶向配体、诊断探针和药物至关重要。对封装菌素进行基因工程改造,使其具有异常的热稳定性,并以精确可控的方式获得多种功能。选择肝细胞癌(HCC)细胞结合肽(SP94肽,SFSIIHTPILPL)作为靶向配体,并通过化学偶联或基因插入将其展示在工程化封装菌素(Encap_loophis42C123)的表面。通过荧光显微镜成像证实了展示SP94肽的封装菌素(SP94-Encap_loophis42C123)对HepG2细胞的有效且选择性靶向递送。将抗癌前药阿霉素(AlDox)通过硫醇-马来酰亚胺迈克尔型加成反应化学负载到SP94-Encap_loophis42C123上,并通过细胞活力测定评估所递送药物的疗效。SP94-Encap_loophis42C123-AlDox显示出与游离药物相当的杀伤效果,且该平台自身无细胞毒性。工程化封装菌素的功能可塑性和通用性使我们能够同时引入靶向配体、诊断探针和治疗试剂,为开发多功能递送纳米平台提供了机会。