School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
DNA Repair (Amst). 2022 Jan;109:103257. doi: 10.1016/j.dnarep.2021.103257. Epub 2021 Nov 20.
Cas9 targets DNA during genome editing by forming an RNA:DNA heteroduplex (R-loop) between the Cas9-bound guide RNA and the targeted DNA strand. We have recently demonstrated that R-loop formation by catalytically inactive Cas9 (dCas9) is inherently mutagenic, in part, by promoting spontaneous cytosine deamination within the non-targeted single-stranded DNA of the dCas9-induced R-loop. However, the extent to which dCas9 binding and R-loop formation affect the subsequent repair of uracil lesions or other damaged DNA bases is unclear. Here, we show that DNA binding by dCas9 inhibits initiation of base excision repair (BER) for uracil lesions in vitro. Our data indicate that cleavage of uracil lesions by Uracil-DNA glycosylase (UDG) is generally inhibited at dCas9-bound DNA, in both the dCas9:sgRNA-bound target strand (TS) or the single-stranded non-target strand (NT). However, cleavage of a uracil lesion within the base editor window of the NT strand was less inhibited than at other locations, indicating that this site is more permissive to UDG activity. Furthermore, our data suggest that dCas9 binding to PAM sites can inhibit UDG activity. However, this non-specific inhibition can be relieved with the addition of an sgRNA lacking sequence complementarity to the DNA substrate. Moreover, we show that dCas9 binding also inhibits human single-strand selective monofunctional uracil-DNA glycosylase (SMUG1). Structural analysis of a Cas9-bound target site subsequently suggests a molecular mechanism for BER inhibition. Taken together, our results imply that dCas9 (or Cas9) binding may promote background mutagenesis by inhibiting the removal of DNA base lesions by BER.
Cas9 在基因组编辑过程中通过在 Cas9 结合的向导 RNA 和靶向 DNA 链之间形成 RNA:DNA 杂合双链(R 环)来靶向 DNA。我们最近证明,无催化活性的 Cas9(dCas9)形成的 R 环具有内在的诱变性,部分原因是通过促进 dCas9 诱导的 R 环中非靶向单链 DNA 中自发的胞嘧啶脱氨。然而,dCas9 结合和 R 环形成对随后修复尿嘧啶损伤或其他受损 DNA 碱基的影响程度尚不清楚。在这里,我们表明 dCas9 的 DNA 结合抑制了体外尿嘧啶损伤的碱基切除修复 (BER) 的起始。我们的数据表明,Uracil-DNA 糖基化酶 (UDG) 对 dCas9 结合 DNA 上尿嘧啶损伤的切割通常受到抑制,无论是在 dCas9:sgRNA 结合的靶链 (TS) 还是单链非靶链 (NT) 中。然而,在 NT 链的碱基编辑器窗口内的尿嘧啶损伤的切割受到的抑制程度小于其他位置,表明该位点对 UDG 活性更具许可性。此外,我们的数据表明,dCas9 结合到 PAM 位点可以抑制 UDG 活性。然而,这种非特异性抑制可以通过添加与 DNA 底物缺乏序列互补性的 sgRNA 来缓解。此外,我们还表明,dCas9 结合还抑制了人类单链选择性单功能尿嘧啶-DNA 糖基化酶 (SMUG1)。随后对 Cas9 结合靶位点的结构分析提出了 BER 抑制的分子机制。总之,我们的结果表明,dCas9(或 Cas9)结合可能通过抑制 BER 去除 DNA 碱基损伤来促进背景突变。