Yushkevich Paul A, Pluta John B, Wang Hongzhi, Xie Long, Ding Song-Lin, Gertje Eske C, Mancuso Lauren, Kliot Daria, Das Sandhitsu R, Wolk David A
Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA.
Hum Brain Mapp. 2015 Jan;36(1):258-87. doi: 10.1002/hbm.22627. Epub 2014 Sep 2.
We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm(3) resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI [Yushkevich et al., 2010], our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic mild cognitive impairment (aMCI) and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797), and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest nonuniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions.
我们评估了一种用于在体3特斯拉磁共振成像(MRI)中标记内侧颞叶海马亚区和皮质亚区的全自动技术。该方法在分辨率为0.4×0.4×2.0毫米³、部分脑覆盖且呈倾斜方向的T2加权MRI扫描上进行分割。海马亚区、内嗅皮质和嗅周皮质通过结合多图谱标签融合和基于学习的误差校正的流程进行标记。与早期关于T2加权MRI中自动亚区分割的工作[Yushkevich等人,2010年]相比,我们的方法无需手动初始化,能在更大的前后范围内标记海马亚区,并标记嗅周皮质,后者进一步细分为布罗德曼区35和36。在一项遗忘型轻度认知障碍(aMCI)研究的29名受试者中,使用交叉验证来测量自动分割相对于手动分割的准确性,齿状回(骰子系数为0.823)、CA1(0.803)、嗅周皮质(0.797)和内嗅皮质(0.786)标签的准确性最高。使用83名受试者的更大队列,通过亚区体积和区域亚区厚度图来研究aMCI在海马区域的影响。在CA1亚区和左侧布罗德曼区35双侧观察到aMCI与健康衰老之间最显著的差异。厚度分析结果与体积测量结果一致,但提供了额外的区域特异性,并表明aMCI对海马亚区和内侧颞叶皮质亚区的影响存在不均匀性。