Suppr超能文献

轻度认知障碍中海马亚区及内侧颞叶皮质结构的自动容积测量和区域厚度分析

Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment.

作者信息

Yushkevich Paul A, Pluta John B, Wang Hongzhi, Xie Long, Ding Song-Lin, Gertje Eske C, Mancuso Lauren, Kliot Daria, Das Sandhitsu R, Wolk David A

机构信息

Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA.

出版信息

Hum Brain Mapp. 2015 Jan;36(1):258-87. doi: 10.1002/hbm.22627. Epub 2014 Sep 2.

Abstract

We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm(3) resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI [Yushkevich et al., 2010], our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic mild cognitive impairment (aMCI) and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797), and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest nonuniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions.

摘要

我们评估了一种用于在体3特斯拉磁共振成像(MRI)中标记内侧颞叶海马亚区和皮质亚区的全自动技术。该方法在分辨率为0.4×0.4×2.0毫米³、部分脑覆盖且呈倾斜方向的T2加权MRI扫描上进行分割。海马亚区、内嗅皮质和嗅周皮质通过结合多图谱标签融合和基于学习的误差校正的流程进行标记。与早期关于T2加权MRI中自动亚区分割的工作[Yushkevich等人,2010年]相比,我们的方法无需手动初始化,能在更大的前后范围内标记海马亚区,并标记嗅周皮质,后者进一步细分为布罗德曼区35和36。在一项遗忘型轻度认知障碍(aMCI)研究的29名受试者中,使用交叉验证来测量自动分割相对于手动分割的准确性,齿状回(骰子系数为0.823)、CA1(0.803)、嗅周皮质(0.797)和内嗅皮质(0.786)标签的准确性最高。使用83名受试者的更大队列,通过亚区体积和区域亚区厚度图来研究aMCI在海马区域的影响。在CA1亚区和左侧布罗德曼区35双侧观察到aMCI与健康衰老之间最显著的差异。厚度分析结果与体积测量结果一致,但提供了额外的区域特异性,并表明aMCI对海马亚区和内侧颞叶皮质亚区的影响存在不均匀性。

相似文献

3
A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI.
Neuroimage Clin. 2017 May 26;15:466-482. doi: 10.1016/j.nicl.2017.05.022. eCollection 2017.
4
Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease.
Hum Brain Mapp. 2019 Aug 15;40(12):3431-3451. doi: 10.1002/hbm.24607. Epub 2019 Apr 29.
5
Automated Hippocampal Subfield Segmentation at 7T MRI.
AJNR Am J Neuroradiol. 2016 Jun;37(6):1050-7. doi: 10.3174/ajnr.A4659. Epub 2016 Feb 4.
8
Automated hippocampal subfield segmentation in amnestic mild cognitive impairments.
Dement Geriatr Cogn Disord. 2012;33(5):327-33. doi: 10.1159/000339588. Epub 2012 Jul 2.
9
Structural Alteration of Medial Temporal Lobe Subfield in the Amnestic Mild Cognitive Impairment Stage of Alzheimer's Disease.
Neural Plast. 2022 Jan 24;2022:8461235. doi: 10.1155/2022/8461235. eCollection 2022.
10
Effects of age and Alzheimer's disease on hippocampal subfields: comparison between manual and FreeSurfer volumetry.
Hum Brain Mapp. 2015 Feb;36(2):463-74. doi: 10.1002/hbm.22640. Epub 2014 Sep 18.

引用本文的文献

2
High-gamma and beta bursts in the left supramarginal gyrus can differentiate verbal memory states and performance.
Front Neurol. 2025 Jul 31;16:1627528. doi: 10.3389/fneur.2025.1627528. eCollection 2025.
3
Concurrent representations of reinstated and transformed memories and their modulation by reward.
Imaging Neurosci (Camb). 2025 Feb 18;3. doi: 10.1162/imag_a_00476. eCollection 2025.
4
Hippocampal architecture viewed through the eyes of methodological development.
Anat Sci Int. 2025 Aug 5. doi: 10.1007/s12565-025-00878-7.
8
Disease stage-specific atrophy markers in Alzheimer's disease.
Alzheimers Dement. 2025 Jul;21(7):e70482. doi: 10.1002/alz.70482.
10
Reading specific memories from human neurons before and after sleep.
bioRxiv. 2025 Jul 4:2025.07.01.662486. doi: 10.1101/2025.07.01.662486.

本文引用的文献

1
Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2.
Neuroimage Clin. 2017 Dec 27;17:1006-1018. doi: 10.1016/j.nicl.2017.12.036. eCollection 2018.
2
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
3
Regional vulnerability of hippocampal subfields to aging measured by structural and diffusion MRI.
Hippocampus. 2014 Apr;24(4):403-14. doi: 10.1002/hipo.22234. Epub 2013 Dec 25.
4
Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia.
Neuroimage Clin. 2013 Aug 14;3:155-62. doi: 10.1016/j.nicl.2013.08.007. eCollection 2013.
5
Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI.
Neuroimage. 2014 Jan 1;84:505-23. doi: 10.1016/j.neuroimage.2013.08.067. Epub 2013 Sep 12.
6
Improved inference in Bayesian segmentation using Monte Carlo sampling: application to hippocampal subfield volumetry.
Med Image Anal. 2013 Oct;17(7):766-78. doi: 10.1016/j.media.2013.04.005. Epub 2013 May 22.
8
In vivo 7 Tesla imaging of the dentate granule cell layer in schizophrenia.
Schizophr Res. 2013 Jul;147(2-3):362-7. doi: 10.1016/j.schres.2013.04.020. Epub 2013 May 10.
9
A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging.
Neuroimage. 2013 Jul 1;74:254-65. doi: 10.1016/j.neuroimage.2013.02.003. Epub 2013 Feb 13.
10
101 labeled brain images and a consistent human cortical labeling protocol.
Front Neurosci. 2012 Dec 5;6:171. doi: 10.3389/fnins.2012.00171. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验