Lee Andrew H, Symington Lorraine S, Fidock David A
Department of Microbiology and Immunology, Columbia University, New York, New York, USA.
Department of Microbiology and Immunology, Columbia University, New York, New York, USA Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, USA
Microbiol Mol Biol Rev. 2014 Sep;78(3):469-86. doi: 10.1128/MMBR.00059-13.
Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.
随着位点特异性基因组工程的出现,对恶性疟原虫复杂遗传基础的研究正进入一个新时代。该技术以前仅局限于模型系统,但现在已扩展到大多数实验生物,甚至用于人类的实验性基因治疗研究,它使研究人员能够快速产生以前无法实现的基因修饰。这一技术进步依赖于DNA双链断裂修复(DSBR),在疟原虫中具体是同源重组。然而,我们对疟原虫中DSBR的理解很大程度上基于从其他模型系统得出的假设和知识,而这些在疟原虫中并非总是成立。在这里,我们描述了双链断裂的原因、DSBR的机制,以及模型系统与恶性疟原虫之间的差异。这些机制驱动着疟原虫的基本功能,如减数分裂、抗原多样化和拷贝数变异,并使疟原虫能够在宿主免疫压力和药物选择的背景下不断进化。最后,我们讨论了利用DSBR机制加速对这种全球传染性病原体进行基因研究的新技术。