Suppr超能文献

相似文献

1
Genetic screens in human cells using the CRISPR-Cas9 system.
Science. 2014 Jan 3;343(6166):80-4. doi: 10.1126/science.1246981. Epub 2013 Dec 12.
3
A novel sgRNA selection system for CRISPR-Cas9 in mammalian cells.
Biochem Biophys Res Commun. 2016 Mar 18;471(4):528-32. doi: 10.1016/j.bbrc.2016.02.041. Epub 2016 Feb 12.
4
High-throughput screens in mammalian cells using the CRISPR-Cas9 system.
FEBS J. 2015 Jun;282(11):2089-96. doi: 10.1111/febs.13251. Epub 2015 Mar 16.
5
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 2014 Jan 3;343(6166):84-87. doi: 10.1126/science.1247005. Epub 2013 Dec 12.
6
Sequence determinants of improved CRISPR sgRNA design.
Genome Res. 2015 Aug;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub 2015 Jun 10.
7
Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas9-Based Genetic Screens.
Cold Spring Harb Protoc. 2016 Mar 1;2016(3):pdb.top086892. doi: 10.1101/pdb.top086892.
8
Expression analysis of TOP2A, MSH2 and MLH1 genes in MCF7 cells at different levels of etoposide resistance.
Biomed Pharmacother. 2012 Feb;66(1):29-35. doi: 10.1016/j.biopha.2011.09.002. Epub 2011 Dec 28.
10
Genome-wide CRISPR screen reveals SGOL1 as a druggable target of sorafenib-treated hepatocellular carcinoma.
Lab Invest. 2018 Jun;98(6):734-744. doi: 10.1038/s41374-018-0027-6. Epub 2018 Feb 21.

引用本文的文献

1
Cutting-edge technologies in neural regeneration.
Cell Regen. 2025 Sep 5;14(1):38. doi: 10.1186/s13619-025-00260-y.
2
Cytotoxicity of activator expression in CRISPR-based transcriptional activation systems.
Nat Commun. 2025 Aug 29;16(1):8071. doi: 10.1038/s41467-025-63570-4.
7
Tau uptake by human neurons depends on receptor LRP1 and kinase LRRK2.
EMBO J. 2025 Aug 11. doi: 10.1038/s44318-025-00514-0.
9
Selective Depletion of Cancer Cells with Extrachromosomal DNA via Lentiviral Infection.
Cancer Res Commun. 2025 Aug 1;5(8):1458-1465. doi: 10.1158/2767-9764.CRC-25-0144.
10
PIAS4 regulates pluripotency exit and cell fate commitment in porcine embryonic stem cells.
Fundam Res. 2024 Nov 12;5(4):1556-1569. doi: 10.1016/j.fmre.2024.10.016. eCollection 2025 Jul.

本文引用的文献

2
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.
Cell. 2013 Sep 12;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub 2013 Aug 29.
3
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.
Nat Biotechnol. 2013 Sep;31(9):839-43. doi: 10.1038/nbt.2673. Epub 2013 Aug 11.
5
DNA targeting specificity of RNA-guided Cas9 nucleases.
Nat Biotechnol. 2013 Sep;31(9):827-32. doi: 10.1038/nbt.2647. Epub 2013 Jul 21.
6
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
Nat Biotechnol. 2013 Sep;31(9):822-6. doi: 10.1038/nbt.2623. Epub 2013 Jun 23.
7
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.
Cell. 2013 May 9;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub 2013 May 2.
8
Efficient genome editing in zebrafish using a CRISPR-Cas system.
Nat Biotechnol. 2013 Mar;31(3):227-9. doi: 10.1038/nbt.2501. Epub 2013 Jan 29.
9
RNA-guided human genome engineering via Cas9.
Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.
10
Multiplex genome engineering using CRISPR/Cas systems.
Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验