Quester S, Dahesh M, Strey R
Department of Chemistry, Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany.
Laboratoire Charles Coulomb UMR 5221, Université Montpellier 2, CNRS, 34095 Montpellier, France ; Laboratoire Charles Coulomb UMR 5221, CNRS, 34095 Montpellier, France ; UMR IATE, UM2-CIRAD-INRA-SupAgro, 2 Place Pierre Viala, 34070 Montpellier, France.
Colloid Polym Sci. 2014;292(9):2385-2389. doi: 10.1007/s00396-014-3317-6. Epub 2014 Jun 28.
We have generated closed-cell microcellular foams from gliadin, an abundantly available wheat storage protein. The extraction procedure of gliadin from wheat gluten, which involves only the natural solvents water and ethanol, respectively, is described with emphasis on the precipitation step of gliadin which results in a fine dispersion of mostly spherical, submicron gliadin particles composed of myriad of protein molecules. A dense packing of these particles was hydrated and subjected to an atmosphere of carbon dioxide or nitrogen in a high-pressure cell at 250 bar. Subsequent heating to temperatures close to but still below 100 °C followed by sudden expansion and simultaneous cooling resulted in closed-cell microcellular foam. The spherical gliadin templates along with the resulting foam have been analyzed by scanning electron microscope (SEM) pictures. The size distribution of the primary particles shows diameters peaked around 0.54 μm, and the final foam cell size peaks around 1.2 μm, at a porosity of about 80 %. These are the smallest foam cell sizes ever reported for gliadin. Interestingly, the cell walls of these microcellular foams are remarkably thin with thicknesses in the lower nanometer range, thus nourishing the hope to be able to reach gliadin nanofoam.
我们利用麦醇溶蛋白(一种大量存在的小麦贮藏蛋白)制备出了闭孔微细胞泡沫材料。本文描述了从麦麸中提取麦醇溶蛋白的过程,该过程仅分别涉及天然溶剂水和乙醇,并着重介绍了麦醇溶蛋白的沉淀步骤,这一步骤可使由无数蛋白质分子组成的大多呈球形的亚微米级麦醇溶蛋白颗粒形成精细分散体。将这些颗粒的紧密堆积物进行水合处理,然后在高压容器中于250巴的压力下置于二氧化碳或氮气气氛中。随后加热至接近但仍低于100℃的温度,接着突然膨胀并同时冷却,从而得到闭孔微细胞泡沫材料。已通过扫描电子显微镜(SEM)图片对球形麦醇溶蛋白模板以及所得泡沫材料进行了分析。初级颗粒的尺寸分布显示直径在约0.54μm处达到峰值,最终泡沫孔尺寸在约80%的孔隙率下于1.2μm左右达到峰值。这些是有史以来报道的麦醇溶蛋白泡沫材料中最小的泡沫孔尺寸。有趣的是,这些微细胞泡沫材料的细胞壁非常薄,厚度处于较低的纳米范围,因此有望能够制备出麦醇溶蛋白纳米泡沫材料。