Albareda Guillermo, Appel Heiko, Franco Ignacio, Abedi Ali, Rubio Angel
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
Phys Rev Lett. 2014 Aug 22;113(8):083003. doi: 10.1103/PhysRevLett.113.083003. Epub 2014 Aug 21.
The molecular Schrödinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and nonadiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.
分子薛定谔方程是根据原子核(或电子)的非幺正运动方程重写的,这些方程参数化地依赖于一组一般定义的电子(或核)轨迹的构型。该方案是精确的,不依赖于自由度的追踪。因此,可以利用基于轨迹的统计技术来规避对计算要求很高的玻恩 - 奥本海默势能面和非绝热耦合元素的计算。通过与全波函数的精确因式分解建立形式上的联系,恢复了势能面的概念。这种联系被用于从精确传播方案的简化形式中获得见解。